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1. Let «, 8, k, m be integers, and let n be a positive integer.
(i) Show that (a, f) = (a+kf, B) = (a, B + ka).
(ii) Find (m? —3,m?® —2m +2). Find (n! +2, (n+ 1)! +n + 2).

(iii) Solve the following simultaneous congruences for z.
4z = 6 (mod 10), 2z =13 (mod 17).
(iv) Solve the following simultaneous congruences for x.
z=2 (mod m*—3), z=4 (modm®—2m+2).
(v) Solve the following simultaneous congruences for z.

(n'+2)z=3 (mod (n+1)!+n+2), 2z=5(modn+1).

2. (i) Define Euler’s ¢ function. Prove Euler’s Theorem, that if (b,n) = 1
then 6™ = 1 (mod n). Use it to show that 51|(2 x 5% + 1).

(ii) Write down a general formula for ¢(n). Show that if p is prime and p|n
then (p — 1)|¢(n). Make a table of ¢(p*) for small primes p and integers a > 1,
in order to find all values of n for which ¢(n) = 16. Show that there is no n for
which ¢(n) = 26.

(iii) If ¢(n) is divisible by 2 but not by 4, show that n = 4 or p* or 2p® for
some prime p = 3 (mod 4) and some positive integer a. Show that there is no n
for which ¢(n) = 2 x 5139,

3. (i) Define the term Carmichael number. Let n = q1qz .. .q; where the g;
are distinct primes and £ > 2. Suppose that, for each i = 1,...,k, we have
(¢ — 1)|(n — 1). Prove that n is a Carmichael number.

(ii) Suppose that p, 2p — 1, 3p — 2 are all primes, with p > 3. Prove that
p(2p —1)(3p — 2) is a Carmichael number. Find the smallest Carmichael number
of this form.

(iii) Let n = pgr, where p,q,r are distinct primes. Suppose also that
(p —1)|(gr — 1) and (¢ — 1)|(pr — 1) and (r — 1)|(pg — 1). Prove that n is a
Carmichael number. Show that 601 x 1201 x 1801 is a Carmichael number (you
may assume that 601,1201 and 1801 are prime).
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4. Let m > 1 be an integer not divisible by 2 or 5. Consider the standard
equations which occur in the calculation of the decimal expansion of %:

1 = 1,
10’/’1 = mq; + T2,
10r, = mge + 13, etc.,

where 0 < r; < m and 0 < ¢; < 9 for each 7 so that the ¢; are the decimal digits.
Prove that, for j > 0, 7j11 = 10’ mod m, and that the length of the period of
1/m in decimal notation is the order of 10 mod m.

Suppose now that m = p is prime (not equal to 2 or 5), and assume that

1
- =0-q1q2-- Q2%
p

has even period length 2k. Show that 10¥ = —1 (mod p) and deduce that
Thy1=p— 1.

Show further that the sums ry 4+ ri 0,73 + k13, €tc., are all equal to p, and
that the sums ¢ + gx+1, g2 + Qu+2, g3 + Qr+3, etc., are all equal to 9.

5. (i) Define the function o(n). Show that for a prime p and integer a > 1,
o) =1+p+p*+...+p* = ’%11_1. Write down a general formula for o(n).
Show that if p is odd and « is odd then o(p?®) is even. Show that if p is odd and a
is even then o(p®) is odd.

(ii) Show that, if 2°T' — 1 is prime, then n = 25(25*! — 1) is a perfect
number. Write down three even perfect numbers.

(iii) Use the formula for o(p®) to show that

a a p
< — .
o(p*) <p (p_ 1)
Now suppose that n = p®¢® where p > 3 and ¢ > 5 are distinct odd primes and
a>1,b> 1. Show that
a b
0(p)<§’ o(e’) _ 5
pr 20 ¢ A4
Deduce that o(n) < 2n and that n is not a perfect number.
[Hint: You may find it helpful first to show the identity -£- =1+ -]
P P

(iv) Let n = p'p52ps®pyips®pg®, where py, ..., pe are distinct odd primes.
Show that if n is a perfect number then 3|n and exactly one of nq, ..., ng is odd.
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6. (i) Describe Miller’s Test to base b for the primality of an odd integer n
with (b,n) = 1. Explain why, if n is prime, then it always passes Miller’s Test.

(ii)) For each of the following values of n and b apply Miller’s Test to n
base b. In each case, decide whether n is a pseudoprime to base b and decide
whether n is a strong pseudoprime to base b.

(a) b=6,n=217. (b) b=8,n=65. (c) b=2,n=129.
[You may wish first to compute 6% (mod 217), 8 (mod 65) and 27 (mod 129).]

(iii) Let & > 1. Show that n = 22° + 1 always passes Miller’s Test to the
base 2.

7. For the continued fraction expansion [ag, a1, ag, . ..] of g = /n where n is
not a square, you may assume the standard formulae:

Pk-i-\/ﬁ (n_PkZ—H)
Qk Qr

(i) Show that P, = ag and Q; = n — a3. Now suppose that Q = 1 for
some k£ > 1. Show that Py.1 = P;, Q11 = (1, and that the continued fraction
recurs: [ag, @1, -, Gk

(ii) For the case n = 9d* + 6d (d > 1), show that the continued fraction
expansion of y/n is [3d, 1, 6d).

(iii) Find three solutions in integers x > 0,y > 0 to the equation

Py=0,Q =1, 2, = , g = [zg], Piy1 = axQr—Pry Qri1 =

x? —48y% = 1.

8. Let p denote an odd prime.

(i) State Euler’s Criterion for quadratic residues.
(ii) Deduce from Euler’s criterion that (5}) = 1ifand only if p = 1 (mod 4).

(iii) State Gauss’ Law of Quadratic Reciprocity. Evaluate (T55). Show that
(2) = 1 if and only if p = +1 (mod 12).

(iv) Let p1,po, - .., pr be primes, all congruent to —1 (mod 12), and define n
by: n = 3(2pip2...px)2 — 1. Show that n = —1 (mod 12). Now, let p be
prime and p|n. Use the definition of n to show that (%) = 1. Deduce that
p = £1 (mod 12). Show that at least one such prime factor p of n must be
congruent to —1 (mod 12) and hence show that there must be infinitely many

primes congruent to —1 (mod 12).
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