1. (i) Explain why

$$x^2 \equiv x \pmod{1000} \iff x^2 \equiv x \pmod{8} \text{ and } 125$$
.

Find all solutions of $x^2 \equiv x \pmod{1000}$, stating clearly any general results on congruences which you use in your solution.

- (ii) Show that $x^3 \equiv 0, 1$ or $-1 \pmod{9}$ for any integer x. Deduce that it is impossible to write an integer of the form 9m + 4 as the sum of three cubes $x^3 + y^3 + z^3$ for integers x, y, z.
- (iii) Show that if $x^2 + y^2 \equiv 0 \pmod{7}$ then $x \equiv 0$ and $y \equiv 0 \pmod{7}$. Deduce that no integer of the form 7(7m+1) can be written as the sum of two squares $x^2 + y^2$ for integers x, y.
- **2.** (i) State and prove Fermat's Theorem. Use it to prove that $3^{50} + 5^{50}$ is divisible by 17.
- (ii) Let $n = r^6 + 1$, where r is an integer. Use Fermat's Theorem to show that, if 7 does not divide r, then $n \equiv 2 \pmod{7}$. Find also what n is congruent to $\pmod{7}$ when 7 does divide r. Deduce that n is never a multiple of 7 for any value of r. Show also that n is never a multiple of 3 or 11. Let p be a prime of the form p = 12m + 7. Show that n is never a multiple of p.
- **3.** (i) Define Euler's ϕ function and show that for a prime p and $a \geq 1$, $\phi(p^a) = p^{a-1}(p-1)$. Write down a general formula for $\phi(n)$. Show that if p is prime and p|n then $(p-1)|\phi(n)$. Show that if p is prime and $p^2|n$ then $p|\phi(n)$.
- (ii) Find the prime-power decomposition of 10! (that is, write 10! as the product of powers of distinct primes). Compute $\phi(10!)$. Compute $\phi(a)$ where a is the binomial coefficient

$$\left(\begin{array}{c} 25 \\ 5 \end{array}\right) = \frac{25!}{5!20!}.$$

(iii) Show that there do not exist integers $n, k \geq 1$ such that $\phi(n) = 3^k$. Find three odd primes p such that $\phi(p)$ is a power of 2. Find three odd composite integers n such that $\phi(n)$ is a power of 6.

- **4.** (i) Describe Miller's Test to base b for the primality of an odd integer n with (b, n) = 1. Explain why, if n is prime, then it always passes Miller's Test.
- (ii) Define what it means for n to be a pseudoprime to base b. Define what it means for n to be a $strong\ pseudoprime$ to base b.
- (iii) For each of the following values of n and b apply Miller's Test to n base b. In each case, decide whether n is a pseudoprime to base b and decide whether n is a strong pseudoprime to base b.
 - (a) b = 2, n = 645. (b) b = 3, n = 121. (c) b = 2, n = 33.

[You may wish first to compute 2^{28} (mod 645), 3^5 (mod 121) and 2^5 (mod 33).]

- (iv) Let (a, n) = 1. Show that if n is a pseudoprime to base a and base ab then n is also a pseudoprime to base b.
- **5.** (i) Let m be an integer not divisible by 2 or 5. Consider the standard equations which occur in the calculation of the decimal expansion of $\frac{1}{m}$:

$$\begin{array}{rcl} 1 & = & r_1, \\ 10r_1 & = & mq_1 + r_2, \\ 10r_2 & = & mq_2 + r_3, \text{ etc.}, \end{array}$$

where $0 < r_i < m$ and $0 \le q_i \le 9$ for each i so that the q_i are the decimal digits. Prove that, for $j \ge 0$, $r_{j+1} \equiv 10^j \mod m$, that the length of the period of 1/m in decimal notation is the order of 10 mod m, and that the period begins immediately after the decimal point.

- (ii) Let (x, m) = (x, n) = (m, n) = 1. Show that $\operatorname{ord}_{mn} x$ is the least common multiple of $\operatorname{ord}_m x$ and $\operatorname{ord}_n x$.
 - (iii) Find the lengths of the decimal periods for the fractions

$$\frac{1}{7}$$
, $\frac{1}{23}$, $\frac{1}{161}$.

(iv) For any prime p > 7, show that the decimal period of $\frac{1}{7p}$ has length at most 3(p-1).

[Hint. For the last part, you may find it helpful to use the result from lectures that ab = (a, b)[a, b], for any integers a, b.]

- **6.** (i) Define the functions d(n) and $\sigma(n)$. Show that for a prime p and integer $a \ge 1$, $d(p^a) = a + 1$ and $\sigma(p^a) = \frac{p^{a+1}-1}{p-1}$. Write down a general formula for d(n) and $\sigma(n)$.
- (ii) Make a table of values of $\sigma(p^a)$ for small p and a in order to find all n for which $\sigma(n) = 96$.
 - (iii) Find the smallest n for which d(n) = 14.
- (iv) Let $n = 2^5 3^3 pq$, where p and q are primes and $3 . Suppose that <math>\sigma(n) = 4n$. Show that this implies

$$35(p+1)(q+1) = 48pq.$$

Find primes p and q which satisfy this equation and show they are the only ones possible.

7. For the continued fraction expansion $[a_0, a_1, a_2, \ldots]$ of $x_0 = \sqrt{n}$ where n is not a square, you may assume the standard formulae:

$$P_0 = 0, Q_0 = 1, \ x_k = \frac{P_k + \sqrt{n}}{Q_k}, \ a_k = [x_k], \ P_{k+1} = a_k Q_k - P_k, \ Q_{k+1} = \frac{(n - P_{k+1}^2)}{Q_k}.$$

- (i) Show that $P_1 = a_0$ and $Q_1 = n a_0^2$. Now suppose that $Q_k = 1$ for some $k \ge 1$. Show that $P_{k+1} = P_1$, $Q_{k+1} = Q_1$, and that the continued fraction recurs: $[a_0, \overline{a_1, \ldots, a_k}]$.
- (ii) For the case $n=4d^2+2d$ $(d\geq 1)$, show that the continued fraction expansion of \sqrt{n} is $[2d,\overline{2,4d}]$.
 - (iii) Find three solutions in integers x > 0, y > 0 to the equation

$$x^2 - 42y^2 = 1.$$

- 8. Let p denote an odd prime.
 - (i) State Euler's Criterion for quadratic residues.
 - (ii) Deduce from Euler's criterion that $(\frac{-1}{p}) = 1$ if and only if $p \equiv 1 \pmod{4}$.
 - (iii) Deduce from Euler's criterion that $(\frac{2}{p}) = 1$ if and only if $p \equiv \pm 1 \pmod{8}$.
- (iv) State Gauss' Law of Quadratic Reciprocity. Evaulate $(\frac{6}{79})$ and $(\frac{-11}{151})$. Show that $(\frac{-3}{p}) = 1$ if and only if $p \equiv 1 \pmod{3}$.