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Bernoulli then indicates some other problems that can be solved by his method. They
e: :

(1} To find on which of the infinitely many cycloids (or circles, parabolas, etc.) passing
rough 4 with the same base 4H a heavy point can fall from 4 to the vertical ine ZB in
e shortest time, '

{2) To find the path of a particle moving in a medium of varying density, which curve is
e same as the refraction curve studied by Huygens and himself,

(3) To find isoperimetric figures of different kinds;¢ he especially challenges his brother
hann to solve the following problem: Among all isoperimetric figures on the common
se BN [Fig. 5], to find the curve BFN which—though not having itself the largest area—
such that this property belongs to another curve BZN of which the ordinate PZ is pro-
rtional to a power or a root of the segment PF or the arc BF. Johann will get 50 ducats

& gentleman known to Jakob if he solves this problem before the end of the year,

z
Fig. 5 B(p
F
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‘having mastered the methods that the Bernonllis had developed in the study of jzo-
wetric problems, Euler began to develop his own approach shortly before 1732. Where
rnoullis had only solved specific problems, Euler began. to look for a general theory.
theory, which began to take shape after 1740, appeared finally in the majestic volume
d Methodus inveniendi lineas curvas mawims minimive proprietate gaudentes sive
problematis isoperimetrici latissimo sensu accepti (A method for discovering curved
having & maximum or minimum property or the solution of the isoperimetric problem
1 its widest sense; Lausanne, Geneva, 1744; Opera omnia, ser. I, vol. 25, 1952). The
onsists of six chapters with two appendices. It does not yetb present the caloulus of
tions in the form in which we know it—that was Lagrange’s work, the importance of
th Fuler immediately understood when it appeared. Euler’s method still has a geometric
er, but Fuler understood its nonessential nature: in chap. I, §32, he remarks: “It is
ossible to reduce problems of the theory of curves to problems belonging to pure
And conversely, every problem of this kind Proposed in pure analysis can be con.-

nd solved as a problem of the theory of curves.” Euler, however, preferred to deal

h problems in a geometric way, because by this means the method is “wonderfully

1° Here the isoperimetric problers enter into the caleulus. The theorem that of ali figures
of the same perimeter the cirele has the largest area is ascribed to Zenodorus, who lived
between 200 ®.c. and .. 100, Some of his theorems can be found in Pappus’ ** Collection.”
See T. L. Heath, 4 manual of Greek mathematics (Clarendon Press, Oxford, 1931), 382-383,




Chapter I deals mainly with the type of questions that oceur
(the term caleulys varigtionum does not a
in a paper of 1760 (1766),
@ difference between abgo
meet the many special problems that give the
the case in which certain other indetermined qua Integral. Chaptey
IV containg more special problems, chapter V discusses the relative method, and chapter V[
i he first appendix deals with elastic curves, The book abounds iy

The book was republished as ger, I, vol. 25 of the Opera omnia with g, 55-page German ip.
troduction by O, Cazathéedory {containing & elassification of Buler's examples). There exigt
& partial German translation by P. Stickel in Ostwald’s Kiassiker, No. 46 {(Engelmann,
Leipzig, 1894) and g coraplete Russian translation (Moscow and Leningrad, 1934).

We begin with o section of chapter I

[applicata] by y;
further, dy < prdx, dp = g dx, dg = = sdz, and so on. The integral
under consideration is f Z d, where Z must be such that Z dy cannot be inte. -
grated; Z can be g funetion [ Jfunctio] not only of 2 and ¥, but also of P Ty,

Then the principle, which Jakoh Bernoplli had established, i announced in

Proposition IT. Theorem. If ams [Fig. 17 is & curve in which the value of th
formula, [ Z dv is a maximum op & minimum, and Z is an algebraic or a deter
mined funetion of z,y, #y..., then every portion mn of this curve has th
special property that, if it is referred to the abscisss, MW » the value of f Zdai
also & maximum o minimum,

The proof follows essentially the reasoning of Jakob Bernoulij {see Selection V.20(2)_),"
One of the coroliaries Ppoints out that the reasoning does not hold when in Z there appear
indeterminate integrals, as f ¥ dz. Then follows
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Proposition 111, Theorem. If gmz is & curve, corresponding to the abscissa
AZ, for Whiehf Z dx is & maximum or g minimum, while Z contains indefinite
integral expressions, then the property of a maximum or a minimum does not

hold for any arbitrary part of the curve, but belongs to the whole curve cor-
responding to the ahscissa 4Z.

After the proof of this theorem, and certain corollaries, comes

Hypothesis 11, When the abscissa AZ [Fig. 2] of & curve is divided into in-
numerable infinitely small elements 7K » KL, LM, ..., all equal to one another,
and some portion AN iy denoted by X, to which some variable function F

1 4

Fig. 2

H I KL MANOP

corresponds, then we shall denote the values of the function F for the following
points of the abscissa ¥, 0, P, Q, and for the preceding points L, K, I, H e
by F, P*, F" ... for N,O,P,...,and F,, By By, for L, K, I,.... Thus
We can indicate in an easy way, without prolix writing of differentials, the value
of & subseript prime variable function at any point of the abscissa.

o forth, and, when the ordinates M. m, Nn, Oo, Pp, . .. are indicated byy. v, ", y"

LER, L, ... by 9, Yo, Y, . . . then, since p = % _Nn ;me

iere follow five corollaries, which express the following identities:

= F 4 dF, F=F, 1drF,
F’ +dF', F; = F” + dF”,
=F”+dF”s Fﬂ Fm""dFm:

IR

£




=y’ﬂ__3y”+3y!_y

P s ete.

Corollaries VI-VIIL. If f Z du is referred to the abscissa AWM — )
value corresponding to the next element 3 N = dzis Z dx. In a similar way w
shall indicate the values of f Z dx belonging to the elements N » MO, 0P, .
by Zdx, Z' dv, 2" dx, . ... Then if the expression f Z dx is referred to the
abscissa AM = =z, the value belonging to the abscissa 47 is

fzczx+ Bdv+ Z'de+ Z'dw + -,

until we arrive at point Z.

When therefore we must find the curve for which, for the given abscissa, the
value of f Z dz is the largest or smallest, we must obtain a maximum or minimum:
of this expression f Zidz 4 Zde + 7' da + Z7 dw 4 ete.

Proposition IV. Theorem. When the expression f Z dz has a maximum ‘or
minimum for the curve amnoz [Fig. 2] referred to the given abscissa 42, an
We conceive another curve amvoz which

infin

OHAPTHER IT

Proposition 1. Problem. When in & curve amz [Fig. 2] some ordinate :
augmented by an infinitely small segment ny, then we must find the incre
decrease of the separate quantities determined by the curve.
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o obtain the solution all quantities depending on ¢’ are changed; the others remain fixed.
or instance, p = (¥’ — y)/dx increases by the particle ny/dz, and p’ = (y" — y')/da de-
reases by the particle ny/dz. Reasoning in a similar way, we find the following table of
uantities that change:

Quangity: Yy » p q g g’ Fu 7 7

E+nv 2np nv_l_?w__%ﬂ %_ﬂ
dx T dw " dx t dz " da® dad ' dx  da®

ny
Change: +nv + T

—_—

1y = @, then the -Among the corollaries we find one stating that from the changes in the primary quantities

2 & similar way we Il the changes in the quantities that are composed of them can be found. These changes

MN, MO,0P,. .. in in a sense be considered their differentials. From the ordinary differential of, say,

s referred to the V(1 + p*), which is dy' V{1 + 27) + y'p dp/ V(T + p7), we can therefore find as the
hange of the function

y'puy
+m V(I + pf) 4+ L2 |
VA ) T

ven abscissa, th
lum or minimum

Proposition I1. Problem. When % is a determined function of 2 and y alone,
to find the curve az for which the value of the expression f Z dx is & maximum
or minimun.

When dz = M dx + N dy, the required curve is given by N dany = 0, or N = 0.
mong the corollaries is the case in which Z is a function of 2 only, when all curves having
same axis are all solutions. When Z as a function of ¢ and ¥ is algebraic, the solution is
ebraic. A maximum or minimum may also occur when N = oo, Several examples follow;
is to find the curve for which for all curves corresponding to the same abscissa
= y4)y dr = 0 has a maximum or minimum. Answer: az — 3yy = 0. Fuler then
usses whether this is & maximum or a minimum, and finds the value of the integral.

the differen Proposition 111. Problem. When 2 is a determined function of %, %, and p, so
that

dZ-_—de+Ndy+Pdp,

to find among all curves corresponding to the same abscissa the curve for which
[ Z dz is & maximum or minimum.

" Solution. Let amz be the required curve, and imagine the ordinate Nu — y'
augmented by a particle nv. Then the differential value of the expression f Z dz,
or of the equivalent expression Zdz + %' da + Z" dx + ete., together with
Z,dx + Z,dx + 2, dx + ete.,, must be = 0. We obtain the differential value
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of the whole quantity f Z dz, resulting from the translation of the point 4 to "
when we look for the differential values of the separate terms, insofar as they
have been affocted by the translation, and combine them into a sum. But a3a
result of the translation of the point % to v only those terms are changed thas
contain the quantities ', »., and #’, hence only the terms Z du and 7 da; sineg’
just as Z depends on z as well asony and p, so Z' is a function of ¥ and p’. We
must therefore differentiate those members, and substitute in their differentis)
for dy’, dp, and dp’ the above-mentioned values 4-np, +nvfdz, and ~ nvfda
But just as dZ = M dy + Ndy + Pdp, so d7' = M’ du + N dy' + P ay
The differential value of 7 ie therefore P(nu/dz), that of Z' is equal to N'.4
— Peny'/dw, and that of Z dx + Z’ dx, hence also of the whole exXpressig
dea:, is equal to ne-(P + N' da — P’). But P’ — P = 4P and for N
may write N, so that the differentia] value will be = ny- (N de — dP). And sines
we obtain the equation of the required curve by equating the differential valus
of the expression f Z dx to zero, we obtain 0 = N dv —dPor N — dPlds =

i i quired curve. Which is what we

Corollaries point out that N — dP[dx = 0 is always a differential equation of the secon
order [gradus], unless there is no p in P. There are therefore two constants, so that tw

from which the curve can he constructed, using logarithms (Buler writes p for our I
Z = (xx + ¥V (1 + pp), many cases, depending on #; for example, n = %

v — y? = 2kay + O,

! Thig is the brachystochrone; seo Selection v.20. i
? This is the i Book I1, Sect. 7, Prop. 34, Scho
Auid with uniform velocity par
and proportional to the squar

. Nowton withous proof g

i given in the deta Eruditorum

8 (1699), and 17 (1699) by N. Fatio do Duillier, L'Hépital, and Johann Berno
differential equation is y dz @y? = @ ds®; see Johann Bernoulli, Opera omnia ((fens
307-315,
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at the required equation is

® This is the paragraph to which Lagrange refers; seo Selection V.22, p. 407,
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Corollary 111, Art. 39, finishes with the remarl;

From this we obtain the following rule for the solution of problems in which
the curve with & maximum or minimum of f Z dz is desired, where

4Z = M dz + Ndy + P dp:

differentiate Z, place zero instead of M dw in the differentials M dw + N dy
+ P dp, keep N dy unchanged, and write — » dF instead of P dp. Then in this
way we obtain N dy — ydP = 0, an equation which because of dy = pda
passes exactly into N — dP/dx = 0, which is the one we have already found, A
method free from a geometric solution is therefore desired, from which it will

be clear that in such an investigation of maxima and minima instead of P dp
we must write —p d.P.3

Proposition IV. Problem. When % is a function of z, ¥, p, and ¢, so that
dZ:de-i—Ndy+Pdp+qu,

to find among all curves corresponding to the same abscissa the eurve for which
f Z dz is a maximum or minimum.

nwda:(N’ _ P f n Q’ 2Q Q:) = nv-dx(N’ _ ilj Ei_d@)

& T IR T T T IR p R
dP  ddQ
= nv-d:c(N - + d_a:'f)’

v _ 9P ddQ

=+ 0.

d dx®




ture mE at every point has the.
smallest area 4 Rm. The answer is a eyeloid, Tn Proposition V Huler derives for the cage
A% = M dzx + Ndy + Pdp ¢ Qdg + Rdr 4+ 8 ds + Fdt +... the condition

dP d4Q d3R dts g5
OMN‘WWWFJ@WE@*

pters we find problems that belong to the isoperimetric type. For instance
chapter V, 41 solves the problem: _
To find among all curves of the same length, connecting the points @ and » [Fig. 4], the
curve that encloses the largest or smallest area a4 Zz. Answer: the circle, Similarly, \
V, 45: To find among all curveg enclosing the s
about the axis 4% gives the surface of smalles
belonging to type 68 of Newton, 0b(z — )2 =

The first, appendix exists in an English translation by W. A, Oldfather, C, A. Ellis, al
D. M. Brown, **Leonhard Euler's elastic curves,” Isis 9 (1933), 72-160; there is a Qer
translation by H. Linsenbarth in Ostwald’s Klassiker, No. 175 (Engelmann, Leipzig, 191
The second appendix contains Euler’s firss publication of the principle of least action.
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Lagrange had already studied Ruler’s bapers when he was in hig teens, and Fuler’s bool
1744 in partioular. As a young professor at the Artillery School in Turin he began to ¢
spond with Euler on thig subject as early as 1755, when he was 21 years of age. B

* Enumeratio linearum lertit ordinds (1708); see Seloction ITT.8.




