The properties of the real numbers are fundamental to the development of calcu-
lus.

Yet, to a very large extent, the key properties of the real numbers were not recog-
nised until late in the nineteenth century.

Examining properties of the real numbers led people to examine the nature of
numbers: real, complex, rational and integer.

Finally, this led to the development of the logical foundations of mathematics, a
project which extended into the twentieth century.

One of the most famous proofs in all mathematics is the proof, found in Euclid,
that v/2 is irrational.

This provides one of the first examples of a real number which is not rational,
that is, not the quotient of one integer by another.

Legend has it that this proof was found by the Pythagoreans, and that the discov-
ery of non-rational numbers so disrupted the presumed order of things that the
discoverer was thrown into the sea.

How do we think of real numbers? A common non-expert description is as
“points on a line”.

We probably think of the real line as having no break in it .

This, when fully formulated, is, in fact, the property that distinguishes the real
numbers from the integers and rational numbers.

The Greek’s view of real numbers

Key properties of the real numbers are identified in Euclid — but in more recent
times, the importance was not recognised until the nineteenth cemtury.

These are nowadays attributed to the Greek mathematician Eudoxus.
In Euclid, a positive real number is interpreted as a ratio of two lengths.

If a/b and ¢/d are two positive real numbers (ratios of lengths a and b, and of ¢
and d respectively) then it is possible to decide which of these is “less than” the
other.

We say that a/b < ¢/d if and only if ma < nb whenever mc < nd for positive
integers m and n.

This is a complete and correct definition of order on positive real numbers.

Theories of the real numbers were presented by:

William Hamilton,in two papers read to the Irish Academy in 1833 and 1835,
but he did not complete the work;



Weierstrass,in lectures in Berlin in 1859, but he disowned a publication in 1872
which purported to present this theory;

Méray in 1869;

Heine in 1870;

Dedekind, published in 1872, but based on earlier ideas;
Cantor, published in 1883.

The best known theories nowadays are those of Dedekind and Cantor.

Both theories — and indeed any theory — describes the real numbers in terms of
the rationals.

Cantor’s description uses equivalent sequences of rational numbers, of the type
known nowadays as Cauchy sequences

Dedekind’s description uses Dedekind cuts

A Dedekind cut A is a nonempty set of rational numbers with the following prop-

erties.

There is a rational number x such that x ¢ A.
If y € Aand z < y is rational, then z € A.
A has no maximal element.

The third property was actually left out of Dedekind’s description. Some such
property is needed. If « is rational we should decide whether {y € Q : y < z}
is a Dedekind cut or whether {y € Q : y < x} is a Dedekind cut, but we should
not allow both.

For example,
{reQ:x<0orz? <2}

is a Dedekind cut —- which we call v/2.
A real number is then a Dedekind cut.

Defining arithmetic and order of real numbers is straightforward, in terms of the
arithmetic and order on rational numbers.

For example, if A and B are real numbers, then A + B is the Dedekind cut

{y1 +y2:y1 € A,ys € B}.

It is easy to verify that A+ B satisfies the three properties required of a Dedekind
cut.

We have A < B if and only if A is contained in B and A # B



Hilbert (1862-1943) gave a list of the axioms of the real numbers, regarding
addition, multiplication and order. The list can be found in Kline, pp 990-991.

But the most important property of real numbers is completeness:

If A,, is a Dedekind cut for every integer n > 1 and A,, C A,,+1 and there is a
rational number x which is not in A,, for any n, then U,,>1 A,, is a Dedekind cut.
The Completeness Axiom is often formulated as:

if a,, is an increasing (decreasing) sequence of real numbers which is bounded
above (below), then lim,, _,  a,, exists (as a real number).

How do we know that the rationals exist?
Various people attempted to define and identify and prove properties of the rational
numbers:

Martin Ohm (1792-1872)
Karl Weierstrass (1815-1897)

Giuseppe Peano (1858-1932)

Weierstrass used the description that is used in formal studies today

The rationals are pairs of integers [a, b] where b # 0 and where [a, b] = [c, d] if
and only if ad — bc = 0.

Also we identify [a, 1] with the integer a.

We define
[a1,b1] + [az, bo] = [a1b2 + agby, bibs],
and

[&1751] : [GQ,bQ] = [a1a27blb2]

The usual rules of arithmetic: associativity, commutativity, distributivity, can be
proved from the corresponding rules for the integers, but

What are the integers

Dedekind published a work called “Was sind die Zahlen” It was not much read.
Kronecker said “God made the integers. All else is the work of man”

The best known axiomatisation of the natural numbers is that of Peano.

The natural numbers are the positive integers.

Some people include zero but Peano did not



Peano’s axioms
1. 1is a natural number
2. Every natural number a has a successor a + 1
3. 11is not a successor
4. Ifa+1=0>b+1thena=10

5. If a set S of natural numbers contains 1 anda € S = a+1 € Sthen S = N,
the set of all natural numbers.

The fifth axiom is what is needed to carry out induction

Addition of integers

e Addition can be defined in terms of successor.
e Addition of @ and 1 is just a + 1.

e Then if a + b has been defined we define

a+(b+1)=(a+b)+1,

that is, the addition of a and the successor of b is defined to be the successor of
a+b.

e Peano’s fifth axiom then gives that addition of a and b is defined for any a, b € N.

Associativity of addition
e Also we can prove by induction on ¢ € N that
a+(b+c)=(a+b)+c
forall a, b, c € N
e By definition this is true for ¢ = 1.

e Suppose it is true for c.

e Then
a+(b+(c+1) =a+((b+c)+1) =(a+(b+c)+1

={(a+b)+c)+1 =(a+b)+(c+1)

as required.

But



How do we know the natural numbers exist?
We don’t of course.We hypothetize
But can we build up the natural numbers from something simpler?

Peano’s axioms make it clear that the natural numbers are built up from the
natural numberl

Or one can use 0 - as is more usually done.

The approach which developed in the early twentieth century is to identify

0 with the empty set (),

1 with the set containing the empty set {0}

if the natural numbera is a set then a + 1 is the set a U {a}.

Hence every natural number is a set.

The properties of the natural numbers therefore depend on the language and
axioms of set theory

Set theory

Cantor had a big role in introducing set theory into mathematics.

The axiomatization of set theory — and hence of mathematics —was carried out
by Bertrand Russell (1872 - 1970 ) and Alfred North Whitehead (1861-1947)

Bertrand Russell published his “Principles of Mathematics” in 1903 and together
they published “:Principia Mathematica” in 1910-13

Russell was one of the great figures of the twentieth century: mathematician,
philosopher, pacifist in the first world war, educationalist, writer (Nobel prizewin-
ner), founding member of CND.

Perhaps the most striking example of the need for the Axiomatization of set
theory is

Russell’s paradox

Let
A={z:zisaset, z &z}

Is A e A?
If so then by the definition of A, A ¢ A, and we have a contradiction.

If A € A then again by the definition of A, we have A € A which again gives a
contradiction.

So what is wrong?
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