
Gottfried Wilhelm Leibniz (1646-1716)

• His father, a professor of Philosophy, died when he was small, and he was
brought up by his mother.

• He learnt Latin at school in Leipzig, but taught himself much more and also
taught himself some Greek, possibly because he wanted to read his father’s
books.

• He studied law and logic at Leipzig University from the age of fourteen – which
was not exceptionally young for that time.

• His Ph D thesis “De Arte Combinatoria” was completed in 1666 at the University
of Altdorf. He was offered a chair there but turned it down.

• He then met, and worked for, Baron von Boineburg (at one stage prime minister
in the government of Mainz), as a secretary, librarian and lawyer – and was also
a personal friend.

• Over the years he earned his living mainly as a lawyer and diplomat, working at
different times for the states of Mainz, Hanover and Brandenburg.

• But he is famous as a mathematician and philosopher.

• By his own account, his interest in mathematics developed quite late.

• An early interest was mechanics.

– He was interested in the works of Huygens and Wren on collisions.

– He published Hypothesis Physica Nova in 1671. The hypothesis was that
motion depends on the action of a spirit ( a hypothesis shared by Kepler–
but not Newton).

– At this stage he was already communicating with scientists in London and
in Paris. (Over his life he had around 600 scientific correspondents, all over
the world.)

– He met Huygens in Paris in 1672, while on a political mission, and started
working with him.

– At Huygens suggestion he started reading the works of St Vincent (a Flem-
ish Jesuit, another key figure in the early development of calculus).

• He also produced a calculating machine in 1670-1, which could carry out the
four basic arithmetic operations.

• (In the next decade he developed binary arithmetic.)

• The diplomatic mission to France failed. In 1673 he accompanied von Boineb-
urg’s nephew on a related mission to London.

1



• He came into contact with mathematicians and scientists, including Huygens,
while working as an ambassador for the Elector of Mainz, first in Paris, in 1672,
and then in London in 1673.

• He visited the Royal Society, was elected a fellow, and talked to a number of
scientists there, including Robert Hooke, Boyle and Pell.

• Pell told him that his work on series had been done by a mathematician called
Mouton (which was correct).

• Hooke later spoke slightingly of his calculating machine.

• Leibniz returned home and redoubled his efforts in mathematics

Leibniz and calculus

• His notes on calculus date from 1673.

• Many of these were never published. They include original ideas and also his
reinterpretation of the works of others.

• Even in his Ph D thesis he was interested in successive differences of sequences,
and sums of successive differences, that is,

an = a0 + (a1 − a0) + (a2 − a1) + · · ·+ (an − an−1)

• This is the discrete version of the Fundamental Theorem of Calculus.

• In a manuscript in October 1675 he had a statement of the Fundamental Theorem
of Calculus:

“just as
∫

will increase, so d will diminish the dimensions”

• This was also the manuscript in which he introduced the notation
∫

for integral
– using both this and the omn that he had previously used.

Here is an excerpt from this manuscript

• Throughout the 1670’s, Leibniz developed his calculus

• By 1676 he had the derivative and integral of xn.

• In 1677 he had the correct rules for differentiation of sums, products, quotients.

• By 1680 he had the notation dx, dy for differentials.

• His first publications on calculus was in 1684: Novus Methodus pro maximis et
minimis, itemque tangentibus..

• Newton heard about Leibniz’ work and wrote to him, at least twice, around 1676,
to tell him about his own results.
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• Both times, Leibniz replied later than Newton expected, simply because the let-
ters took a long time to reach him.

• Newton, however, interpreted this tardiness as meaning that Leibniz wanted to
steal his results.

• This was the start of the Newton-Leibniz controversy.

• In a letter to James Bernoulli in 1703, Leibniz describes how his studies in calcu-
lus progressed.He mentions many names: Descartes, Cavalieri, Vieta, Huygens,
Pascal, Gregory St Vincent, Roberval, James Gregory (but not Newton).

• In 1711 Leibniz was accused of plagiarism in the Transactions of the Royal So-
ciety. When he protested, the Royal Society set up a committee to determine
priority, but did not ask Leibniz to give evidence. The committee decided in
favour of Newton, who wrote the report.

• Leibniz went off to work for the Duke of Hanover (the uncle of George I, later
king of Great Britain)

• Among many other activities, he did pioneering work in geology, through plan-
ning projects concerning mines in the Harz Mountains.

• He died in obscurity.

The Bernoulli brothers

• Jakob (James) Bernoulli (1655-1705)

• Johann (John) Bernoulli (1667-1748)

• These brothers were both important mathematicians in their own right and also
important correspondents of Leibniz.

• They were among the first readers of Leibniz’ work on calculus, and among the
first to use the calculus.

• The Bernoulli family produced mathematicians over three generations whose
work is still known today.

• They were all called James or John or Daniel or Nicholas. (Since they were
Swiss, various versions of their names are used.)

• Although James initially taught John mathematics – in the face of opposition
from their father – the brothers were very competitive – and also competitive
with Leibniz.

• James had a professorship in Basel.

• John had a chair in Groningen – but in earlier years was paid handsomely by his
friend, the mathematician l’Hopital, for teaching him calculus.
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• James solved the problem of the tautochrone which was also solved by Leibniz.

• John found the solution of the brachistochrone problem and issued a challenge
to others to find a solution.

• Solutions were found by James Bernoulli, Leibniz, l’Hopital and Newton.

The Tautochrone

• A tautochrone or isochrone is a monotone curve with a minimum, which can be
taken at y = 0, such that the time take for a bead to slide along the curve to the
bottom is always the same, no matter what the starting point.

• Huygens found that an inverted cycloid is such a curve.

(x(y0), y0)

(x(0), 0)

(0, 2)

• He tried to make a mechanism to illustrate this but – not surprisingly – it was not
possible to eliminate friction, and so he could not do it.

• Some time later James Bernoulli used calculus to verify Huygen’s result that the
cycloid is the only solution.

How is this done?

• We assume there is no friction.

• So the potential energy of a bead of mass m at height y is mgy and the kinetic
energy is m

2 ((dx/dt)
2 + (dy/dt)2) and the sum of these:

m

2
(2gy + (dx/dt)2 + (dy/dt)2)

is constant.

• If the bead starts at height y0 then the bead is at rest when y = y0, which we can
take to happen at t = 0,meaning that x′(0) = y′(0) = 0 and y(0) = y0. So

(x′(t))2 + (y′(t))2 = 2g(y0 − y)

• Writing dx/dt = (dx/dy)(dy/dt), we have

−dy
dt

√
(dx/dy)2 + 1

2g(y0 − y)
= 1.

(Clearly y decreases with t so dy/dt ≤ 0)
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• So ∫ y0

0

√
(dx/dy)2 + 1

2g(y0 − y)
dy =

∫ T

0

dt

where T is the time taken to slide to the bottom y = 0.

• The time T is supposed to be the same no matter what the choice of y0.

• In this integral x is a function of y ( not t) so the curve x(y) is the same for all
y0.

• In the integral, write y = y0u and write (dx/dy)(y) = x′(y). Then the integral
becomes

I =

∫ 1

0

√
y0

((x′(y0u))2 + 1)

2g(1− u)
du,

which has to be equal to T for all choices of y0.

• Since y = 0 is a minimum of y(x), we expect dy/dx = 0 at y = 0, and therefore
we do not expect dx/dy to exist at y = 0 — and it does not.

• If
x′(y))2 =

A

y
− 1

then
1 + (x′(y0u))

2 =
A

y0

which makes I independent of y0.

• In fact this is the only way that I can be independent of y0 (at least if y(x) has a
Taylor series expansion).

• So
dx

dy
= −

√
A

y
− 1 = −

√
A− y

y
.

So

x = −
∫ √

A− y

y
dy

Making the change of variable y = A(1 + cos θ)/2 = A cos2(θ/2) gives

dy = −(A/2) sin θdθ, x = A−A cos2(θ/2) = A sin2(θ/2)

and
x =

∫
A

2

√
tan2(θ/2) sin θdθ =

∫
A sin2(θ/2)dθ

=

∫
A

2
(1− cos θ)dθ =

A

2
(θ − sin θ)

This is indeed the inverted cycloid.
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