
Iteration and Fixed Points

MATH206 Project (after MATH241)

The included notes were taken from a variety of sources, but before reading them, you are
advised to refresh your memory of important ideas from MATH241:

• points and their stability;

• iteration and sequences;

Also, it would be a good idea to recall concepts from other modules:

• proof by mathematical induction;

• complex numbers (from MATH103);

• inverse functions;

• features of graphs of functions (maxima etc.)

Sources

[B-G-R] J.W. Bruce, P.J. Giblin and P.J. Rippon, Micro Computers and Mathematics, pp
345-362, pp55-62.

[D] R. Devaney, An Introduction to Chaotic Dynamical Systems, pp 24-31, pp 60-70

[E] Elaydi, Discrete Chaos, pp 289-301, pp 20-29, pp 51-70, pp 135-146

[O] O’ Neil, Advanced Engineering Mathematics, pp 729-735

In all the problems below, the theoretical piece and tasks under the same letter are to be
done by one student.

Theory

A. Iterative sequences and iteration under Möbius transformations.
[B−G− R], pp345-351.

B. Iteration under Möbius transformations and quadratic polynomials.
[E], pp289-301.

C. The logistic map.
[B−G− R], pp345-347, 352-362;

D. Stability of fixed points.
[E], 20-29;
[D], 69-70.



E. Periodic points and Singer’s Theorem.

[D], 24-31 and 69-70; [E], 62-68;

F . Iteration of matrices.
[E], 135-146;

G. Newton’s method

[E], 21-23, [B−G− R], 55-62.

H. One-dimensional dynamics

[D], 60-68, [E], 51-60.
Exercises for Section A

a. Find an explicit solution for the iterative sequence

xn+1 = x2n, n = 0, 1, 2, · · ·

with initial term x0. Consider the sequence

xn+1 = x2n + 2xn, n = 0, 1, 2, · · ·

with initial term x0. By using the change of variables x = u− 1, show that

xn = (x0 + 1)2
n − 1, n = 0, 1, 2, · · ·

b (i). Suppose that f , g are conjugate functions with

g = φ−1 ◦ f ◦ φ.

Show that if c is a fixed point of f , then φ−1(c) is a fixed point of g.

(ii). Do exercise 8.1 from section A, p.349

The following questions are concerned with Möbius sequences xn+1 = f(xn), where

f(x) =
ax+ b

cx+ d
, c 6= 0, ad− bc 6= 0

for real constants a, b, c, d.

c (i). Determine the fixed points of f . Show that if

(a− d)2 + 4bc > 0

then f has two distinct fixed points, called α and β, say.

(ii). Show that
(cα + d)(cβ + d) = ad− bc,

and, using this, show that cα + d 6= 0 and cβ + d 6= 0.



*d (i) Use the facts that α = f(α) and β = f(β) to verify the equation

xn+1 − α
xn+1 − β

=

(
cβ + d

cα + d

)(
xn − α
xn − β

)
, xn 6= β. (1)

(ii). Deduce from d (i) that

xn − α
xn − β

=

(
cβ + d

cα + d

)n(
x0 − α
x0 − β

)
, n = 0, 1, 2, · · ·

e (i). Show that

f ′(α) =
cβ + d

cα + d
and f ′(β) =

cα + d

cβ + d
,

and deduce that, if |f ′(α)| < 1, then xn → α as n→∞ for all real numbers x0, apart from
β and −d/c.

(ii). Using the iteration xn+1 = f(xn) in the case of a = 1, b = 2, c = d = 1, take x0 = 0
and iterate until you obtain x6 up to 4 decimal places. Verify that x6 =

√
2 up to 4 decimal

places. Why does this illustrate the result of e (i)?

*f. If (a− d)2 + 4bc = 0, then there is only one fixed point of f . In this case, show that

(a+ d)2 = 4(ad− bc),

and deduce that f ′(α) = 1. Show, further, that the change of variables

u =
1

x− α

transforms equation (1) of d (i)into

un+1 = un +
2c

a+ d
.

Deduce that un → ±∞, and hence that xn → α as n→∞, in this case.

Exercises for Section B

*a. Prove that any Möbius transformation can be written as a composition of the three
following forms of maps:

z 7→ z + λ, λ ∈ C,

z 7→ 1

z
,

z 7→ µz, µ ∈ C.

b. Obtain the fixed points of T , and, if possible, use Theorem 7.1 from section B, p. 296,
to determine their stability in these cases:

(i). a = 1− 2i, b = c = 0, d = 1;

(ii). a = i, b = 1/4, c = 2i, d = 1.



For questions c, d, let T be such that a = 1, b = i, c = 1, d = −i.

*c. Show that the fixed points of T in this case are

(1 + i)(1±
√

3)

2
.

d. Obtain the derivative of T at its fixed points. Deduce that Theorem 7.1, p.296, cannot
be used to determine their stabilty.

*e. Consider the map Q1/2(z) = z2 + 1/2.

(i. Obtain the fixed points of Q1/2, and determine their stability.

(ii). Find the 2-cycles of Q1/2.

*f. Show that if |1 + c| < 1/4, then Qc(z) = z2 + c has an attracting 2-cycle.

Exercises for Section C

These exercises are concerned with the logistic sequence given by xn+1 = fλ(xn) where fλ(x) =
λx(1− x) for 0 < λ ≤ 4.

*a. Familiarize yourself with Dr Toby Hall’s Iterator program on

http://www.liv.ac.uk/∼tobyhall/math206/

which contains full instructions. The program computes iterations of the functions f (but
uses a as the parameter rather than λ) and then draws a spider diagram. Consider the
following intervals of values of λ:

(i) 0 ≤ λ ≤ 1;

(ii) 1 < λ ≤ 2;

(iii) 2 < λ ≤ 3;

(iv) 3 < λ ≤ 3.45 (approx);

(v) λ > 3.45 (approx).

For each of the intervals (i) to (iv), choose a value of λ and use Iterator to produce and
save a picture starting with x0 = 0.3. For interval (v), produce pictures for λ = 3.5, 3.56,
3.58, 3.7, 4. (For intervals (i), (ii), (iii), have initial iterations = 0; for intervals (iv), (v)
have initial iterations = 100.) Include these pictures in your written work by following the
on-screen instructions. then describe what happens to the sequence xn+1 = f(xn) as n gets
large for each of the intervals (i) to (v).

b. Do exercise 9.1 of section C, p. 352.

For exercises c, d, e, f, we assume 2 < λ ≤ 3.

c (i). Prove that f 2
λ is symmetric about the linex = 1/2; i.e.

f 2
λ

(
1

[
2− x

)
= f 2

λ

(
1

2
+ x

)
.



(ii). Prove that f 2
λ has a fixed point at cλ, and that

(f 2
λ)′(cλ) = (f ′λ(cλ))2.

(Hint: use the chain rule.)

*d Prove that f 2
λ takes its maximum value λ/4 at dλ and 1− dλ, where

dλ =
1

2
+

1

2

√
1− 2

λ
,

so that fλ(dλ) = 1/2. (Use the fact that the solutions of (f 2
λ)′(x) = 0 are x = dλ, x = 1− dλ

and x = 1/2.)

*e (i). Prove that cλ < fλ(
1
2
) < dλ, and deduce that f 2

λ(1
2
) > 1/2.

(ii). Prove that f 2
λ is increasing for 1

2
≤ x ≤ dλ.

f (i). Prove that
f 2
λ(x)− x = (fλ(x)− x)gλ(x),

where
gλ(x) = λ2x2 − (λ2 + λ)x+ λ+ 1.

(ii). Show that the solutions of gλ(x) = 0 are

x =
λ+ 1±

√
(λ+ 1)(λ− 3)

2λ
,

and deduce that f 2
λ has no fixed points in (0, 1), other than cλ, if 2 < λ ≤ 3.

Exercises for Section D

*a. Prove Theorem 1.4 parts 2 and 3 from section D, p.24

Exercises b and c deal with the function f(x) = µx − ax3 for real constants µ abd a with
a > 0.

b. Show that x = 0 is a fixed point of f , and determine its stability for all values of µ and
a.

c. Obtain the remaining fixed points of f . For which values of µ are there three fixed points
of f , and for which values of µ is there only one fixed point of f? Determine the stability of
the fixed points other than x = 0 for all values of µ and a.

d. Determine whether the fixed point x = 0 is semiasymptotically stable from the left or
form the right in the following problems. (See question 17 from section D, page 29.)

(i). f(x) = x3 + δx2 + x, for δ a non-zero constant.

(ii) f(x) = x+ (ax2 + bx) cosx+ (px2 − b) sinx, for constants a, b, p with a 6= 0.

e. Show that between any two stable fixed points a and b of a continuous map f of an interval
into itself, there must be a fixed point which is not stable. (Hint: use the Intermediate Value
Theorem.)



Exercises for Section E

Let f be a continuous map of an interval I into itself. In what follows fp denotes the p-fold
composition f ◦ · · · ◦ f of f .

a.

(i) Define what it means for a point x ∈ I to be periodic under f of period p.

(ii) Define what it means for x to be a stably periodic point of f .

(iii) Show that if x is a stably periodic point of f then so is f(x).

(iv) Show that if x is periodic of period p then (fp)′(f j(x)) = (fp)′(x) for all j ≥ 0.

b. Find all period 1 and period 2 points of f(x) = x2 − 1 in R. Show that the period 1
points are unstable and that the period two orbit is stable. (HInt: compute f ′(x) for each
fixed point x and (f 2)′(x) for one x in the single period two orbit.)

c. Let f(x) = x2 − 2. Verify that f maps [−2, 2] into [−2, 2] and show that

f(2 cos(θ)) = 2 cos(2θ).

Hence find a formula for fn for all n. Show that 2 cos θ is fixed by fp if and only if 2pθ =
±θ + 2kπ for some integer k. Hence or otherwise write down all the points of periods two
and three under f .

d. Define the Schwarzian derivative of a three-times differentiable real-valued function. Show
that the Schwarzian derivative of any quadratic polynomial is < 0 or = −∞ at all points.

e. State Singer’s Theorem. Explain why this shows thatf as in c has at most three stable
(also called attractive) periodic cycles. If possible explain why there are, in fact none.

Exercises for Section F

*a. Let A be a 2× 2 constant matrix and v a 2-dimensional consant column vector. Prove
that if Anv has a limiting direction, then this limit must be an eigenvector of A. (Hint:
suppose Anv/‖Anv‖ → w for some w 6= 0 as n→∞. Then consider A(Anv/‖Anv‖.)

b. Prove the following by mathematical induction.

(i). If D =

(
λ1 0
0 λ2

)
then Dn =

(
λn1 0
0 λn2

)
.

(ii). If J =

(
λ 0
0 λ

)
then Jn =

(
λn nλn−1

0 λn

)
.

c. Prove the following by mathematical induction.

If J =

(
α β
−β α

)
the Jn = |λ|n

(
cosnω sinnω
− sinnω cosnω

)
, where (λ, ω) is the polar form of

(α, β), that is, (α, β) = (λ cosω, λ sinω).

*d. Show that



A =

(
3 1
−1 1

)
is similar to

(
2 1
0 2

)
, that is, A = XBX−1 for an invertible 2 × 2 matrix

X.

(Hint: show that the only eigenvalue of A is 2 and show that (A − 2)

(
1
0

)
= v is an

eigenvector of A with eigenvalue 2, and find the matrix of A with respect to the basis

(
1
0

)
and v.

*e. Show that B =

(
−1 −2
4 3

)
is similar to B2 =

(
1 −2
2 1

)
.

(Hint: show that the eigenvalues of both B and B2 are 1 ± 2i, and find the corresponding
eigenvectors, which will have complex coefficients in all cases.)

f. Consider the linear systems

(i) X(n+ 1) = AX(n),

(ii) Y (n+ 1) = BY (n),

where A and B are as in exercises d and e. Give the gerenal solutions and a fundamental
set of solutions for each of (i) and (ii). What happens to the general solution X(n) of (i) as

n gets large? What can you guess about the stability of the fixed point X∗ =

(
0
0

)
of (i)?

Exercises for Section G

a. Suppose that f is a polynomial and that x∞ is a zero of f with f ′(x∞) 6= 0. Show that
x∞ is a stable fixed point of the Newton’s method for F :

F (x) = x− f(x)

f ′(x)
.

(Hint: Show that F ′(x∞) = 0.)

The next two questions concern Newton’s method for f(x) = x2 − 2.

b. Draw the graph of f . Now, using tangent lines to the graph of f , sketch the points
(x0, f(x0) and (F (x0), f(F (x0)) in each of the following cases

(i) x0 > 0 and f(x0) < 0

(ii) x0 > 0 and f(x0) > 0

(iii) x0 < 0 and f(x0) > 0

(iv) x0 < 0 and f(x0) < 0.

c. Verify the following by using the formula for F (x0) for this particular f . These should
be apparent from the sketches. Define xn inductively, given x0, by

xn+1 = F (xn) = xn −
x2n − 2

2xn
.



Show by induction that, if x0 6= 0 and x20 6= 2, then:

(i) xn has the same sign as x0 for all n ≥ 0.

(ii) x21 − 2 > 0, and x2n > 2 for all n > 0;

(iii) 0 < x2n+1 − 2 < x2n − 2 for all n > 0.

Hence or otherwise show that limn→∞ xn = ±
√

2, depending on whether x0 > 0 or x0 < 0.

The next few questions concern Newton’s method for f(x) = x3 − 2.

d. Sketch the graph of f and of the Newton’s method F (x) = x− x3−2
3x2

for f .

*e. Now let xn+1 be defined inductively by xn+1 = F (xn), if xn 6= 0. Show that if xn 6= 0
then:

f(xn+1) =
4(f(xn))2

3(f ′(xn))2

(
4xn +

1

x2n

)
=

4(f(xn))2

27

(
4

x3n
+

1

x6n

)
(Hint: Remember that since f is a polynomial of degree 3, it is equal to its third order Taylor
polynomial.)

f. Use induction, and the above, to show that, if x0 > 0 and f(x0) 6= 0:

(i) xn > 0 for all n ≥ 0;

(ii) f(xn) > 0 for all n ≥ 1;

(iii) xn+1 < xn for all n ≥ 1;

(iv) f(xn+1 ≤ 2
3
f(xn) for all n ≥ 1.

Deduce that limn→∞ xn = 21/3 if x0 > 0.

Exercises for Section H

a. State the Intermediate Value Theorem.

b. Let f : R → R be continuous and suppose that there are a < b such that f(a) > b and
f(b) < a. Prove that f has a fixed point in [a, b].

*c. Prove that if f : [a, b]→ [a, b] is continuous and f(a) = a and f(b) = b but f(x) 6= x for
any x with a < x < b then either limn→∞ f

n(x) = a for all x ∈ (a, b) or limn→∞ f
n(x) = b

for all x ∈ (a, b). (Hint: Prove this by contradiction. Use the Intermediate Value Theorem.)

d. State Lemma 2.1 of [E]

The result of exercise e is implied by Sarkovskiy’s Theorem but the result of f is implied by
the methods of proof of Sarkovskiy’s Theorem, not by the statement of it .

e. Suppose that f : R→ R is continuous and there are points a < b < c with

f(a) = b, f(b) = c, f(c) = a.

Show that f has a point of period 2. (Hint: Use Lemma 2.1 of [E] to find an interval
[a1, b1] ⊂ [a, b] such that f([a1, b1] ⊂ [b, c] and f 2([a1, b1]) = [a, b].)



f. Suppose that f : R→ R is continuous and there are points a < b < c < d with

f(a) = b, f(b) = c, f(c) = d, f(d) = a.

Show that f has a point of period 3. (HInt: again, use Lemma 2.1 of [E].


