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conclude that ¢, =0 for n >, Hence £ has the expansion

f@)= 2 ¢z

nm—m

(1> R).

Singularities

6.5 Definitions

Let f be-a complex-valued function. The point a is a regular point
if fis holomorphic at ¢ (that is, if there exists r such that
feHD(a; r)); see 2.2(3)). The point a is a singularity of f if q is 5
limit point.of regular Points which is not itself regular,

Ifaisa singularity of fand f is holomorphic in some punctured
disc D'(a; r), then 4 is an isolated singularity; if f¢ H(D'(a; n) for
any r>0, a is a non-isolated essential singularity. '

6.6 Classification of isolated singularities

Suppose f has an isolated singularity at a. Then f is holomorphic in
some annulus {z : 0<|z—a|<r} and there has a unique Laurent
expansion o

@)=}, c(z~a)

The point a is said to be:
a@ removable singularity if ¢, = 0 for all n <0
a pole of order m (m=1) if ¢-m7# 0 and ¢, =0 for all n<-—m;
an isolated essential singularity if there does not exist . m such
that ¢, =0 for all n <-m. h

Poles of orders 1,2, 3,... are called simple, double, triple, .. ..

Notes (1) Uniqueness of the Laurent coefficients ensures that'

these definitions make sense.
(2) In DV(a; r),

-1 o
f&)= L alz=ay+ ) c(z=ay-

H = —ca n=0
The first sum-on the right-hand ' side is the principal part of the
Laurent expansion; the second sum is holomorphic in D(a;r), by
2.12. Notice that f(z) — Lrlwcifz—a) hasa removable singular-
ity at a. For more information On removable singularities see
5.12(1).

6.7 Examples

1) (z— 1) has a double pole at z=1.
2) (1-cos z)z2 is holomorphic except at z =0, where it i inrn.
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terminate. The Lanrent expansion about z =( is

_]; z.?.+ 24
2 41 g1 "o
so the singularity at 0 i removable,

(3) We showed i Example 6.4(4) that
1 .
cotz=-z-~§+ O@z%) - (z € D'(0; w)).

Hence cot z hag a simple pole at 0. Since cot(z — k) =cot for
cach integer k, each singularity k+ of cot z is a simple pole.

(4) If 0<|z| <o, C w

Sin(l) = Z (~1)r
4 n=Q (2?1 + 1)! '

Hence sin(1/z) has an isolated essential smgularity at 0.

(5) cosec(1/z) has singularities at k) (k €Z). For /30 there

is 2 simple pole at 1/(k=). Since cosec(1/2) is not holomorphic in

any punetured disc D’(0; r), the point .0 is 10! an isolated

singularity. See also 6.15.

Z—(2n+1)

preliminary facts about Z810s, and a technical theorem,
6.8 Zeros ‘

Suppose that f €H(D(a; r)) for some r and that f(a)=0. Assume
that f is not identically zero in D(a;r). By Taylor’s theorem, 5.9,

@)= 3 e(z—ay

We define _the order of the zero of fatato bem. Ze-ros of 6rders.
1, 2,.... are called simple, double, . . . . Since, by 213, ¢, =
¥ a)/n\, fhas a zero of order m at a if and only if

fl=fl@)=...=fNa)=0,  foyg g

6.9 Theorem

(1) Let feH(D(a; r)). Then f has a zero of oxrder m at a i and
only if

(zeD(a; 1), where m=1 and ¢, # 0.

imis — a¥meran o~ i e
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(2) Let feH(D'(a : r)). Then f has a pole of order m at q if and
only if

lim(z — a)"f(z) = D, where D is a non-zero constant. (1)

—ra

Proof. We prove (2). The proof of (1} is very similar, and is left as
‘an exercise.

Necessity Suppose a is a pole of order m. For zeD'(a; r),

f(z)= icn(z—-a)“, where c_'maéO.

RE=—an .

In D'a;n), (z—a)"f(z)=Y=_, G-m(z—a)". The series on fhe
right-hand side defines a function continuous at z=a (by 2.12 and
2.3(1)). Therefore -

Hm{z ~ q?"‘f(z) =c¢c_n70.

Z—>

Sufﬁcieu;:y By Laurent’s theorem, 6.1,

f(z)= i c.(z—a)", where

L j W)
—?'Wi (it 5) (W--—a)n-;-l dw (O<S ‘Qr)_

We require ¢, =0 (n <~m), c.,#0. By the condition (1), given
& >(, there exists §>0 such that

|(w—a)"f(w)-D|<e whenever 0<|w—aq|<s.
Take 0<s <min{, r}. Then
Woal=s>|w=ayfwi<|Dlze (by 1.402))
= |(w—a)™fw)| <(D|+ )51,
Hence, by estimating the integral defining ¢, (using 3.10)),
ol < (| D]+ g)s™,

I n<-m, s™™ can be made arbitrarily small by taking s suffi-
ciently small. The constant ¢, is independent of s, 50 ¢, = 0.

We now have f(z) = L7__ ¢.(z — a)*. As in the necessity proof

2

Con=lim(z — a)™f(z) =D =0, O

6.10 Corollaries

(1)} Suppose fis holomorphic in some disc D{a;r). Then f has a
zero of order m at q if and only if 1/f has a pole of order m at q.

.
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(2) Suppose that f has a pole of order m at a.
(i) Suppose g € H(D(a ; r)) for some r. Then, at a, the function fg
has.
a pole of order m if g(a) #0,
a pole of order m — 1 if g has a zero of order 1 at @ and
n<m,
a removable singularity if g has a zero of order at least .

(if) Suppose g has a pole of order n at 4. Then fg has a pole of
order m + n at a.

Proof. (1) Suppose 1/f has a pole at a. Then f cannot have a
non-isolated zero at a, and so, by the Identity theorem, 5.14, fis
non-zero in I'(a;s) for some 5>0. The result (sufficiency and
necessity) now follows from Theorem 6.9. A

The proof of (2) is left as an exercise. O

6.11 Examples
(1) zsin z has zeros at z = nqr (neZ).

_ [qu— (z sin z)]z=0 = [(s'm z+z cos z)] =0, [ad?z {z sin z)]w0 #0,

z=0

and for n0),
d i ]
[E {z sin z) #0.

Hence, by 6.8 and 6.10, 1/(z sin z) has a double pele at 0 and
simple poles at z=nw (neZ, n#0).
(2} Consider cot z. At the points nr (neZ), sin z has simple zeros
(by 6.8) and cos z#0. Hence, by 6.10, cot z has simple poles at
z=nw (neZ). Compare this method with that of 6.7(3).
(3) Consider N
Flz) = (z—1)*cos nz

(2z —1)(z*+ 1) sin®nz

The denominator has a simple zero at 1/2, zeros of order 5 at =i
and a triple zero at & for-each k € Z; the numerator has a double
zero at 1 and simple zero at (2k +1)/2 for each k e Z. Appealing
to 6.10 we see that fhas poles of order 5 at +i, a simple pole at 1,
a triple pole at k, for k€ Z, k#1, and a removable singularity at
1/2.

6.12 Behaviour near an isolated singularity

(1) Removable singularity Suppose fZ)=3lwc(z—a)" in
D'(a;r). Then f(z)— ¢, as z — a. By defining (or redefining) f(a)
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to be ¢, we make

f@= ) a(z-ay
n=0Q
and so make f holomorphic in D(a; r), by 2.12, Thus a removable
singularity is something of a NOn-event: a ceases to be classifieq ‘as
a singularity once [ is correctly defined at a.

in D{a; #),

(2) Pole Suppose f has a Pole at a. It is immediate from Corol.

lary 6.10(1) that If (@)= as z—s g,

{3) Essential singalarity Suppose f has an isolated essential Sif~-

gularity at a. Let w be any complex number, Then theye exists a

A more spectacular and much deeper result, due to Picard,
asserts that in any D'(a;r), f actually assumes every complex
value, except possibly one. In the, cage of Y%, which has ag 1solated
essential singularity at 0, the exception is 0. ' ‘

Meromorphic functions

6.13 The extended complex plane .

(x, y,0). We let
L X={(x,y, u)el]'\!’3:x3+yz+(u—~%2=zl};
this is a sphere (the Riemann sphere), touching the plane C at

(0, 0, 0). Stereographic projection (see Fig. 6.2) allows ns to set
up-a one-to-one correspondence between ¢ and Z, under which

Coz=x+iy=re¥e:z= L+, p(1 + YL P+ A,
@ <> (0, 0, 1), the north pole of %.
We define open discs in € as follows:
Dla;r):={zer: lz~al<r} (aec, r>0),
Dl r):={zeC: |z|> rtu{e}  (r>0).
A subset G of € is said to be open if, given z g G, there exists r

et i

TN b s e e e s
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North pole

]

(differentiable) at « if ang only if f defined on D(0; 1/r) =C by
F0) = f ()

is continuous (differentiable) at g, Similarly, all the terms relating
to zeros and singularities are applied to o, For example, f is said
to have a pole at o if and only if f has a pole dt 0; e.g. at o, 23 hag
a triple pole and 1/22 sin(1/z) a removable singularity.

6.14 Definition

phic in G.
6.15 Limit points of singularities

Closed sets and limit points in € are defined in the same way as i
C; see 1.10. We claim that any infinite closed subset S of & has g
limit point in S, We prove this from the Bolzano-Weijerstrass
theorem as presented in L.17. X there exists R such that S¢

DO R), our claim follows immediately from 1.17, Otherwise.
Snirerd ctal~ 3t > o :



