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Conformal mapping

We. Now investigate how holomorphic functions behave when
considered as geometric mappings, '

10.6 . Theorem -

. . . l 7 I - i ? . 0‘

'Proof. Let v, and Y= be paths lying in G, both with parameter
Interval [0, 1], having ' common endpoint {=v1(0) = v5(0). We
Suppose that, for k=1 and 2, v0)#0,-s0 that Y. has a well-
defined tangent at g_ given by v () = £+ vi0)t (t=0) and making

The paths v; and Y2 are map :
ped by f to paths fe v, and fo d
these meet at (&Y at an angle A=arg(fe 1Y (0) - arg( ff o ':23’2(1(131).

Tl;e assertion of the theorem is that A =X(mod 2%). By the chain
rule, '

=y ©) _£(0vi(0) - ¥i(0)
(Fev2)(0)  F(&)vi(0) v3(0)’
from which the result follows; see 2.18. 3
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10.7 Definition

A mapping [ is conformal in an open set G if f eH(G) and f'(z)#0
‘for any z€ G; f is conformal at a point ¢ if it is conformal in some
disc D(Z; 7). -
The proof of Theorem 10.6 shows that conformal mappings
‘preserve both the magnitude and sense of angles. If f is differenti-
able at £ but (=0, f does not preserve angles at £. Consider, for
example, f(z) = z*, which doubles angles at 0.

' 10.8- Construction of conformal mappings: preliminary remarks

. (1) Sippose we require a conformal map f from the open upper

half-plane Il ={z :Im z> 0} onto the open unit disc DO; D). It is

. ' ublikely to be hellf)fullt‘o bring Im z (a non-holomorphic function)

directly into the definition of f (which must be holomorphic).
Recall however that Il={z:|z —i|<<|z +i]} (the set of points closer
to i'than to '—i). It ought now to be clear that we should take
f(z)={(z—1/(z +1) for then

T zelle <l fz) e D(0; 1).

Also f is conformal in TI since f is holomorphic there, with
f{z)=2i(z+1y"25 0. This simple example shows that success in
constructing a conformal mapping from one region to another may
depend on a judicious choice of descriptions for the regions. Later

- examples will reinforce this point.

' (2) The composition of conformal mappings is conformal, by the
chain rule. Hence we can hope to build up a conformal mapping
from one region to another by taking a finite sequence of ‘elemen-
tary’ conformal mappings. For example, a typical sequence. of
mappings from a lozenge (bounded by circular arcs) to D(0; 1)
might be as shown in Fig. 10.4. Thus an aid to successful map-
building is familiarity with standard mappings. These include the
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Mbbius transformations,

eXponentials, and powers discussed
below.

Mobius transformations

10.9 Definion .

A Mbbius transformation is a mapping of the form

az+b -
o (a, b, ¢, deC, ad — be % Q).

(The excluded case qd — be =

The M&bius transformation
itself, with (by definition) f(—
is one-to-one and onto, with inverse

frz s

0 produces a constant mapping.)
f is best viewed as a mapping of C-to

W

dw—p T
~1, :
f a—cw o :

also a Mobius transformation. It is easily checked that the Mpbiis
transformations form a group under the

of maps. A general Mobbius tran
mappings of the following types:

zZ+>2ze" (¢ real)
z+=> Rz (R>0)

sformation can be built up from

(anticlockwise rotation iﬁ:ou}g,h b),
(stretching by a factor of R), :
Z—»>z+a (aed) (translation by a), '
Zr>1fz

(inversion).

Suppose f(z)=(az+ b)(ez + d). Then f(z)=(ad~— be)(cz + d)i; :
which shows that f is conformal on C\{~
shows just how much room for manceuvre w

¢ have in constructing
Mobius transformations,

10.10 Theorem

Suppose each of {z,, z,, z,} and {wi, wa, wilis a triple of distinct
pomnts. in C. Then there exists a unique MSbins transformation f
such that f(z,) = we (k=1,2,3), given by f:z — w = f(z), where

=) =2

Z ™ Za Za~—2Z,

d/c)=w, fim)=g/c. The map f:C'—>¢

Operation of composition '

/c}. Theorem 10.10 -
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= (E22)(222)
§:2 Z—z3/ \z3~ 2z,

takes zj, zo, and z5 to 0, 1, and o, respectively. Construct h in the
same way as g, to map Wi, Wa, and ws to 0,1, and <. Then
f=h"eg is the map in the statement of the theorem and flz) =
we(lk=1,2,3). . N

k1(:::)1: uniqueness it is enough to show. that the only 1\40131;113
transformation f:zw~» (az+b)/(cz+d) fixing 0, 1, ani 0 is t.e
identity map. The conditions f{0) = 0, f(e)=00, and f(1) =1 force E
tum b=0,¢=0, and a =d, so that f(z)==z for all =z

Proof. The map

One can show that Mobius transformations map cilzclines to
circlines by using any of the standard IepIGSEHt&thﬂS. of cu‘c}es and
Iines. The proof below shows more: the preservation of inverse
points.

16.11 Theorem

Let S be a circline with inverse points « and 8 (@, B&eC, ?%‘B)
and let f be a Mobius transformation. Then f maps S tor a circline
with inverse points f(a) and f(3B).

2 to write the equation of S in the
_g)rr(gf-l(?f aI;‘/St(:z El?ﬁrf;\l. 1S?1§p02e w=f(z)=(az+ b} (cz+d), so
z=(dw—b)/(a—cw). Then
{cc+d)w—(xa+b) _
(Be+d)w—{Ba+b)

We may rewrite this as

Al

i) w—fe) ~ | Betd , Hac+ds#+0 and Bc—!—d%O, or
O lw=re ™M acra |
i |w—flad)=A !3‘1_:‘;’_" if ec-+d#0 and Bc+d =90, or
ocC |
. ilaatd| . B ‘
G e =5 gf+d, if ac+d =0 and Bc+d#0

both be zero.) In each case the
MNote that ec+ d and B¢+ d cannot ‘ ase th
i(mage of $.is a circline with fle) and f(B) as inverse points; in
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cases (ii) and (jii) the images of the original inverse points are the

centre of the circle and the point co, |

10.12 Theorem

There exists a Mbius transformation map

ping any given circline
to any other given circline,

Proof. The result follows Immediately from Theorems 10.10 ang
10.11, since a circline is uniquely determined by three points (these

10.13  Examples

(1) To find the images under f:z s W=(z—=1)"" of (a) the real
axis, (b) the imaginary axis, (c) the circle centre 0, radius. r.

Solution (a) The real ‘axis is mapped to the circline through
f0)=~1, f()=oco, fle)=0, viz. the real axis. (Alternatively one
may use the fact that the rea] axis has equation z = z.) "

(b} The imagi ary axis has equation |z — 1=|z+1]| and is mapped
to the circline with equation 2 +1| =1, which Is the circle with
centre ~3 and radius 4. _ N
(c) The required image has equation w+1l=r|w). If r= 1, it"is

the line Re w = 1 Ifr#1, itis a circle with ~1 and 0 as inverse .

points. It has the points (-ky - 1)™* as the ends of a diameter (see
Fig. 10.1), and hence has centre (#>—1)~! ang radius r |11, o

(2) To find all M&bius transformations mapping the unit circle T to
itself and mapping « to 0,

Solution. Let [ satisfy the required conditions and map 1 to
e eT. The points & and 1/&@ are Inverse points with respect to T
and so are mapped by f to 0 and (by 10.11). The unique Mébing
transformation taking @, 1, and 0/& to L, &', and co, respectively, is
given by Theorem 10.10 to be z rs where

w_( Z—e )(lbljd)n_(z~—a)(cu"—1)
e \z~1/a/\1<e /= Gz—1/\1—¢g/
But jl—-al——_ll-—&.f, 8o, for some real number Wy,

W= ei"’(:z—_—ﬁ-). M
az -1
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| 10.14 Mappings of regions bounded by circular arcs

A Mdbius transformation can be used, inter alia, to mai a 1?}2&}:)1:‘15:;
shaped region bounded by circular arcs onto a sector. Let

shown in Fig. 10.5. By 10.4,

G= {z : 91<arg(zmg)<2~rr—92}-

z—

— for-
"The Mobius transformation f:z »> (z —a)/{z — 8) maps G confor
mally onto the sector

S={w: 8 <argw<2w~ 0.}

' in to oo; circular arcs Eandmg at f3
st f ﬁzcaflfjfn;zélgbsgrfe also that, because f is conformhal
tIanSffclll'm Y le subtended by S at 0 equals the angle H batween. t 3
bom ine anrgcs of G. Note that the image sector is determine
Egr?ll;?;?flyaby the image of a single point other than « or 8. By

. o ;
| taking the map z—k(z — a)/(z — 8), with k =¢€'” (p € R) chose

. ired
‘suitably, the image sector can be swung round into any desire
e i i two
po’?s[};znérgument deals with mappings of regions ‘boll(;]glecia ’zzrcxivse
members of a coaxal system Cy(e, 8) as defined 1ré1 b. .two reise
10.8 concerns the mapping of a region bounde yml > o
éoilcéntric circles, which form members of some coa y

. Ci(a, B8).



174 I Introduction to complex analysis

Other mappings: powers, exponentials, and the Joukowsl
transformation . '

10.35 Powers

The map z s z» n=2,3,. )i conformal except at 0, where
angles between paths are magnified by a factor of n, With non-
integer powers we have to contend with a multifunction., Suppose,
for definiteness, that  we define, for o eR, z* = |z|*gio=
(z=|z[e"®, —mr<ag =<). Then z sz ig conformal in the plane cut
along (-, 0]. Particularly useful is zrs y™® ; for 0<B <1, this
takes the sector {z : O<arg z < B} conformally onto the open
upper half-plane (see Fig. 10.8). -

"10.16 Exponentials

Letfiz=x+iyrses =, = Re'?; this map is conformal in C. Since
R=¢e"and ¢ =g (mod 2m), f maps

a line x=a to a circle [wl=e® and
aline y=c¢ to a half-line arg w == ¢,

Hence f takes the vertical strip {z : g <Re Z <'b} to the annulus
{w:e® <|w|<e’} and the horizontal strip {z : ¢ < T z<d} to the
sector {w:c<arg w < d}; see Fig. 10.7. In reverse, a logarithm will

10.Y7 The Joukowski transformation

Mobius transformations, powers and exponentials have the prop-
erty of mapping certain families .of circles and straight lines to

Cut

Tt 2™ ‘ Ve

Fig. 10.6
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I—re
Fig. 10.7

similar families. As an example of a mapping ofa diﬁt?rent type we
consider the simplest form of Joukowski transfqrmatmn,

z>w=i(z4+27Y,
This is given equivalenily by

w1 (z+1)2

w—1_ z—1

w—1

It is holomorphic except at 0 and , and conformal except at 1,

where angles are doubiled. . i
Suppose w = u + iv is the image of z = re'®, so that

u=3r+r""cos 8, v =4(r—rYsin 6.
Then the image of the circle |z|=p is the ellipse

u? v?

+ =1,
ip+p™ Y Hp—p™H?
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while the image of the hali-line arg z = uois

u? b2

3

cos?y _sinzy.
which is a hyperbola.

mappings introduced above o map an assortment of regions onto
stmpler ones such as discs and half-planes,
10.18 Example_

To find a conformal mapping of the semicircular region” GG =
{ziImz>0, |z| <1} onto D(0; 1.

Solution,
Stage 1L By 10.14, we can express & as
ferem(zd) <o
B {z.2w<arg(z+1 < |
(note that G is bounded by arcs 'through = subtending angles i

and 0). Define glz)=(z -1y (z+1)=¢ Under g G is mapped
conformally to the quadrant Q={7 1 ig< arg £ <h. '

Stage 2 let = £*. Under ¢~ 7, Q is mapped conformally to the
open  lower half-plane {r:mw<arg s <2m}. (Here the non-
conformality of ¢ s {2 at £=0-(g Q) works to our advantage.)

Stage 3 The open Jower half-plane is {r : [+ +i[<|r—il} and so is
mapped to {w : |w|< 1} under T (D)1 —i) = w.
A suitable map f can now be seeq to be

frziswe (z =12 +i(z + 1)2__i(22+ 2iz 1)
) (z=1P—i(z+ 12" 23~ 2iz+1

this maps G onto D(0; 1) by construction and, as the composite of
conformal maps, ig conformal, ‘O

ME
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Stage 1

Stage 2

Fig. 10.8

10.19 Example

- To find a' conformal mapping of the semi-infinite strip H=

{Z:Imz>0,0<Rez<x} onto a half-plane.

Solution.

- % Stage 1 Put {=¢&" Then |{|=¢ ™™ and arg {=Rez (mod 2m).

So H is mapped by z = £ conformally onto
G={{:0<[{|<1,0<arg { <}

' roceed as in Stages 1 and 2 of Example
?(?%g.zMgs Z?rffﬂ??t;f can use the_]oulcowski Uz}nsfonrfatzﬁn
L > w =3¢+, which is conformal in G. The re%)xon Geli )Gf
union, over 0<r<<1, of the sem.icircular arcs {= re .(O< m);

" see Fig. 10.9. Each of these arcs is mapped to an elliptic arc

. . . u2 v*

+ -
, r+r )2 Y-y
“The uﬁioﬁ of these images covers the open lower ha]iplane, onto
. which H is thus mapped by the composite transformation

=1, v<0 (I=u+iv).

z > w=3c"+e ) =cos z.

'
+ ‘ .
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—_—

Stage 1 Stage 2

Fig. 10.9

10.20 Example

T .
; iscfagdiza i(;r_fwo\x/m_al mapping oj.f the region G exterior to both the
=2 onto the region GG exterior to the unit circle,

Solution.

Stage 1 The region G is bou i
he nded b i
thogonally at =i (see Fig. 10.10). 'I‘akf:y Frevier ares meeting .
‘ - g:z—> z =7
_ T T z4i & .

;gl axs ;3:1501‘;:’131 except at ~i¢ G. The boundary arcs of G are
Seci:g) . © half-lines meeting at g(f=0, and G is mapped onto' a

* S of angle 3m/2 (see 10.7 and 10.14). By conformality

?\:}ag;a 2 Working “from the opposite end, we can realize. G=

:1wl>1} as the image under the conformal map =~
h:TP‘—>T+1EW o T

T—1" e

of the right half—p]_a_ne S‘ ={r; |'T'—" 1| <|'T'+I1|} P ‘ I“.

‘
)

'
'
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Stage 1

Stage 3

——
Stage 2

Fig. 10.10 _

we have to take care because this is a multifunction. We start with
the z-plane cut along [—i,i]. In this cut plane there exists a
holomorphic branch k of {[(z—i)/(z +1)F]. The map we finally re-

" quire is f=h o k. This sends z to w where [{z—-1)/(z 4D =7+* and

(v DHr—1)=w. Hence f(z)=w, where
—2 3
- - :
z+i w1
10.21 Remarks

Because of the way they act on circlines, Mobius transformations,
powers, and exponentials are of most use for mapping regions
whose boundaries are made up of circular arcs, lines, and line
segments. However their scope is, even so, limited. For example,
to handle regions with polygonal boundaries, one must introduce
the Schwarz-Christoffel ransformation, which is awkwardly defined

by an integral:

zr> _[: (f=z) ™ —zo) ™ (-2 ) AL
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S

2 (227

Fig. 10.11

For suitable z; apd k; and the i
holor_norphic branch, this can be sh
& region bounded by an n-gon.

Variants on the Jouk i
owski t fap .
are useful in elementary Iransformation introduced in 10.17

nfegrand a suitably -speciﬁed

I'T‘l;h?oRlen.lann mapping theorem let G be a simialy-connected
glon with G#C. Then there exists a one-to-one conformatl
Mmapping f from G onto D©; 1) with f- DO;1)—> G also

OWD t0 map an open disc ontg - -
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" Holomdrphic mappings: some theory

- It is often ‘necessary to comstruct a conformal mapping f: G - &

sucli that the inverse mapping f':G— G exists and is also
conformal; see 10.38. We present a group of theorems which have
a bearing on this problem and. are of independent interest. Since
there are common themes in the proofs we begin with some
-general remarks.

10.22 Observations

Suppose & is open, feH(G), and ae G.
(1) Assume that G is a region and f non-constant. Then f—f(a) is

‘never zero in some D'(a; r) (by the Identity theorem, 5.14).

(2) Let f be one-to-one. Then f has isolated zeros (by Stage 1 of
the Identity theorem proof, applied to f'; see 5.14).

* (3) Choose r such that D(a ; r)c G and suppose f - f(a) is non-zero

on v¥, where v = y(a;r). Let m:= inf{]f(z)— f(a)|: z € ¥*}. Then
i) m>0 (by 1.18):
(i) for each w e D(f(a); m), f~f(a) and f—w have the same
number of zeros in D(a; r) (counted according to multiplicity) (by

" Rouché’s theorem, 7.7: for zev™*, {f(z)— fla)|=m >|f(a)— w|=

lf(a)—f(Z)-**f(Z)"WI).r |

10.23 Theorem

Suppose f is holomorphic and one-to-one in an open set G. Then f
is conformal in G.

Proof. Assume fora contradiction that there exists a € G such that
f'{a)=0. Choose r such that D(a; )= G and ' is never zero in
D'(a;r).. This is possible by 10.22(2). Let weD'(f(a); m),
where m is as in 10.22(3). By 10.22(3)(@), f~f(a) and f—w have
the same number of zeros in D(a; r). The function f—f(a) has a
zero of order at least two at a (by 6.8). On the other hand, f~w
.cannot have two disiinct zeros, since f is one-to-one, and cannot
have a zero of order greater than ome, since f—w and (f—w)
cannot both be zero at any point in D(a; r). a

10.24 . The Open mapping theorem
Supp'os'.e f 18 holomorphic and non-constant in an open set G. Then

| 'f(G) is open.






