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6. Let z=re’ and w = Re', where 0<r < R. Prove that
Re(iv+z)_|w|2—|z|.2_h R*—#?
W—z Iw— z{? R2—2chos(9——¢)+r2'
(These formulae for the Poisson kernel are needed in Chapter 10.)

7. 'The usual order relation > on R satisfies

(i) x#0=>x>0 or —x >0, but not both, and

(i) x, y>0>x+y>0and xy >0. ' ,
Show that there does not exist a relation > on € satisfying (i) and (if}
(Hint: consider i.) R
8. Describe the following sets geometrically.

M {z:1<Im(z +i) <2}, (i) {z:|z—il<|z—1}},

(i) {z:|z+2i[=2},

limit points? What is its closure?

10. Let G be an open set in C. Which of the following sets are open:

(i) {z:2eG}, (i) {Rez:2zeG),

{ } (i) {z:zeG or z& G},
(iv) {zeG:Imz>0)? :

11. Describe geometrically each of the following sets. Which are opén,!
which are closed, and which are compact? Find the closures of the 3

non-closed sets.
@) {z:1z—1-i}=1},
(i) {z:lz—1+i|=]|z~1-j},
(i) {z:|z+il=|z -1},
() {z=|zle":}w< 0 <iw},
) {z:Rez<1lor Im(z — 1) %0},

(Vi) {z:|z~1<1, [z]|=]z =2}
(i) {z:]z-2}>3, |z| <2},
(viil) {z:]z* - 1] <1},

(ix) {z:|z>z+2},

() {z:Im[(z +i)/2i] <0}:

12. Which of the following complex seqﬁences converge:

® G @ (i, ) <”2+if’>?

n+i ni+i

13.  Suppose (z,) is a complex sequence of distinct points converging to z. ]

Prove that z is the unique limit point of the set {z.:n=1,2,...}.

14. For each of the following choices of f(z), either obtain im__, f {z)

ot prove that the limit fails to exist:
iv) (Re z)(Im z) .

« |z o Z e ZoR1
@ =-, i -, ’(“1)|”;-‘|T' ¢ 2]

15. Prove that f is continuous on C when (D) flz)=%, (i) f(z)=Imz,

(iii) £(z) = Re 2=

16. Define a function f by f(z)=z/(1+|z[). Show that fis continuous

and that it maps C one<to-one onto D(0; 1).

y

" “technical role in the subject. Much
_-holomorphic - fuhections which this chapter introduces, Loosely,

% . holomorphy, given in 2.2,.is restrictive
(iv) {z=|z[e": —m< @< m/2}. - g
9. Prove that any punctured disc D(a; r) is an open set. What are its & - 'practital applications. Power series are

% .- of the theory. As Theorems 2.12 and 5.9

2 Holomorphic functions and
power series

Chapter 1 did not go far enough to reveal the true flavour of

complex analysis. Continvous functions play only an ancillary and

more important are the

holomorphic means "~ differentiable. The formal definition of
: enough to lead to powerful
and, elegant theorems, yet wide, enough to allow a wealth of
central to the development
will show, they define,
and can be used to represeit, holomorphic functions,

That part-of Chapter 10 dealing with examples of holomorphic

; ’mapp.ingS‘ can profitably be studied immediately after this chapter.

Holomorphic functions

21 Functions

In Chapter 1 we took for gramted the concept of a fupction.
Formally, given S=C, a mapping f:S —C which assigns to each
ze§ a unique complex number f(z) is called a complex-valued
function, or simply a function, on S. Reference back to this funda-
mental deﬁnition 1s not merely belated pedantry. This is simply an
opportune .point at which to emphasize the inherent ‘one-

-valuedness’ of a function. (Later we deal also with what we call

multifunctions: a multifunction is a mle assigning a subset of C
(finite or infinite) to each element of its domain set §)

Strictly, given a function f, we should distinguish between f (the
mapping) and f(z) (the image of the point z under f), However,
where it would be cumbersome to do otherwise, we allow F(z) to
denote the function and write, for example ‘z* in place of ‘“the
function f defined by f(z)=z%. We also adopt the notation z
w=1{(z) to indicate that z is mapped by f to w,
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2.2 Definitions
(1) A function f defined on an open subset G of C is differentiable

at ze G if
o fEE 1)~ f2)
h—{ h

exists, When the limit exists it is denoted by f(z) or df/dz.

(2) A function which is differentiable at every point of an open set
G is holomorphic in G. The set of functions holomorphic i in G is
denoted by H(G).

(3) If S is any subset of C, f is holomorphlc in 8 if feH(G) for
some open set G containing S.

2.3 Remarks

(1) Suppose f is differentiable at a.point z of an. open set G’r in |

which f is defined. Then, for z+he G, Ty _
flz+h)=f(z)+ hf'(z)+he(h) where s(h) — 0 as h——>0 -
This is immediate on wntmg, for h% 0 s(h) for . r S

(z—l—hp? f(z)_f,(z), ] ' e

and shows that f(z+h}—> f(z) as h — 0. Hence" dﬁerentlab.ﬂr'cy of.
f at z implies continuity of f at z. We have established: the-
technically useful fact that, if f'i is holomorphlc in a set S, then of s

continuous on S.

(2) Note the role played by open sets in 2:2. Prowded G is: 0pen '
whenever z € G there exists r >0 such that z +h e G. for’ all-hy
- with || <r. This has the ¢ffect that in the computation of the limnit e

defining f'(z), z+h is free to approach z from any direction
as i—> 0. For f to be differentiable at z, the value of the limit must
be independent of the manner in which 2—>0. We exploit'this
in the derivation of the following result by equating the expressxons
obtained for f'(z) on taking (i) & real and (ii) h purely imaginary.

2.4 Theorem (fhe Can'chy—Riemann equations)

Let f be defined on an open set G and be differentiable at
z=x-+iye G Let

fz)=ulx, y)+iolx, y),
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where u aI;d v are real-valued functions on . G (regarded as a
subset of R%). Then u and v have ficst order partial derivatives at

(x,7) (denoted wu, u, o, vy) and these satisfy the Cauchy—
Riemann equations )

U, =u,, Uy, = —1,.

Proof. From Definition 2.2(1),

fl(z) hmf(z+h) f(Z).

0
Hence
o e u(x+h,y)—u(x,y) (2GR, Y~
f(Z)"}g( T &, Y)) u, +iv,
heR h .
and
f{z) ]lm(u(x , y+k)—ulx,y) u(x y+k)— u(x M\ 1
ik )/ Sim o
F;tc=1k . ¢
eR

Equating the two expressions for f'(z) gives
U +iv, = iy, + 0,

_Equatmg real and imaginary parts we obtain

U, = Oy, U, =—u,. D

. 2.5 Example

Let f(z)=]z| on G =C. Prove f is not differentiable at any point.
Solution. In the notation of Theorem 2.4,

u(x, y)=E*+y* and o(x,y)=0.
%, =0 and for (x, y)# (0, 0),

e =x(+y)E, g = y(x 4y
The Cauchy-Riemann equations fail to hold, and f to be differenti-
able, at any point z#0. The point 0 requires separate attention.

me first principles,
f(hY—£(0) - M__} { 1 as h—0 (hreal and positive),
h h 1 as h-—>0 (hzeal and negative).
Hence f'(0) does not exist. |

Then v, =
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for differentiability (see Exercise 2.3). we return to this point in
Chapter 10. There 'we also use the Cauchy-Riemann equations to
establish that the real and imaginary parts of a holomorphic

function satisfy Laplace’s equation in two dimensions. This fact -

forms the basis of many of the applications of complex analysis to
physical problems.

The Cauchy—Riemann equations also have theoretical applic;a— .

tions, as the next result shows,

2.6 Proposition

Suppose f-e H(D(0; R)). Then '
(1) i£f' =0in D(0; R), fis constant; ,
(2) if [f]ig a constant, ¢, in D(0; R), fis constant.

Proof. We adopt the notatio'n'of Theorem 2.4. The proof of this
theorem shows that for z = x+iy e D(0; R), :

F(2) = we+iv, = ~ju, +u,.
Suppose f'=0. Then u, =y = %, =v,=0. Fix arbitrary points

patib and g=c-+id eD(0; R). We shall show that f(p)= - %
f(q). At least one of s=c+ib and t=a+id lies in D(0O; R);" -

without loss of generality suppose s does. Each of x> u(x, b) and

Y>u(c, y) is a real-valued finction of a teal ‘variable with zero -4

' derivative and so is constant, by the Mea'n-_Value the_‘ofem._ Hence
| u(@, B=ue,b),  u(c,b)=u(c, d)
and similarly - :

v(a, b)=v(c, b), vic, b)=0(c, d).
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We conclude that f(p) =f(s)=f(q).
- Now suppose that |f] =, 50 that 42 + v*=¢2 Then

ULl -+ ou, = (), Uity + v, =,
whence, by the. Canchy-Riemann, equations,

o UL, —ou, =0, Uiy, + v, =0,

. -Elimination of u, gives 0= WP+, =2, If ¢ =0, f is trivially

constant. Otherwise, u, =0, and similarly w,, v, and v, are zero,

, W@-dednce_,'as above, that f is constant. O

o setg;"COnpéctedness is the characteristic of D(0; R) germane to the
" proof-of Proposition 2.6; see Proposition 3.18.

1 a

2.7, ‘Holomorphic functions: elementary properties and

examples

(see Definition 2.2(3)). We omit the details as the proofs are
formally identical to their real counterparts. :

(1) Let f and g be holomorphic in § and A €C. Then Af, ftg and
fg (defined pointwise in the usual way) are holomorphic in S and

the usual differentiation rules apply: for all z e S,

WY@ =A(2),  (F+gY(z)= f(2)+g'(2),
(8 (2) = (2)g(z) + f(2)g'(2).
(2) The chain rule Iet f be holomorphic in § and let g be

holomorphic in F(S). Then the composite function gof, given by
(8°f)z) =glf(z)], is holomorphic in § and, for all z e S,

(&=fY(z) =g If(2)]F (z).



