10 Conformal rhappi-ng and .
harmonic functions

Th.e first part of t.he chapter concerns angle-preserving mappings
petwec::n regions in the complex plane. Such mappings are of

final sectio'n revea‘ls the striking parallels between the theory of
holomorphic functions and that of harmonic functiogs, .
We shall adopt a more cavalier attitude to the argument of a

and not with the variation of the argument of a moving point. W&

_ _ to denote any choice from farg z]=
{0:z=|z| ei"}. The price to pay is that sorme equations only hold
modulo an integer multiple of 2.

It will sometimes be convenient to work in the extended plane f:

introduced in 6.13. We adopt the following conventions:
asko=tdootq <o afoa={() forallaeC,'
a/0=c for ail asC\{0},

aXDO=ca><a=cc,

oo-]-oo:.ooxoo:o‘o:oo_
Circles and lines revisrted

Apy circle is given by ag equation |z—a|=r. However our reper-
towre of techniques for solving mapping problems involving circles
wﬂl- be greatly enlarged by héwing another form of equation
available, '

We work in C, and adjoin e to any line in C. Then circles and
st.ralght lines in C correspond to circles on the Riemann sphere X
wiih straight lines associated with circles passing through the nort]::
pole. The distinction between circles and lines is thus rather an

baI hihiCial one, and we introduce the generic name circline to cover
oth.
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10.1 Definition

Points o and B are inverse with respect to the circle lz—al|=r
if (@—a)(B—a)=1r* (we include the pair & =.a, §=); see Fig.
10.1 below. Note that &, 8, and a are collinear. Points ¢ and B azxe
inverse with respect to a straight line € it 8 is the reflection of « in €.

. 10.2 Theorem (Inverse point representation of circlines)
Let @ and B belong to C, a% 3. Then for any A >0, the equation
Z—a

z—B

every such circline can be so represented.

= A represents a circline with inverse points « and £, and

=A.-Denote « by A, 8 by

Proof. Consider the equation

B, and the variable point z by P. If A =1, the locus of P is the
perpendicular bisector of AB; it has « and 8 as inverse points.

Now assume A% 1. The equation givés.the locus of points P for

which the ratio AP:PB has the constant value A. The locus is a

. circle (known as the circle of Apollonius). This can be proved

el geometrically, but it is simpler to switch 'to cartesian coordinates (a

strategy usually to be avoided in complex analysis): Put o=
- aytiap, B=g1+iB,, and .z =x--iy. The equation becomes

VB MY

Ax——=—F2 + |y 2222

(x 1—Az TR

-+ where K is a constant, and this certainly represents a circle. Define
z; and z, by

a—zy=A(z;~B) and a—z3= (3~ z,). t

These points lie on the circle and are collinear with, o and B, so
they are endpoints of a diameter (see Fig. 10.1). The circle has
centre a =3(z;+z,) and radius r=3|z,— z,|. Adding and subtract-
ing the equations above gives

a—~a=3A(z,—2z,) and 2A(B~—a)=(z;—z.).

Hence (@ — a)(8 —a) = i(z,— 2z2)(zy— z2) = r*, which proves that o
and B are inverse points with respect to the circle.

Conversely, it is clear that the equation of any line can be
written as |z —«|=|z — B| for some « and B. Also, given any tircle
|z—al=r, we can choose a#a and then B= at+ri{a—ay™? to
make « and B inverse points. Take any point z, on the circle and
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Fig. 101

let A =|zo~al|/|zo— B]. Then the c:ii"t:l-j:2 E(z-—,a)/(z——ﬁ)l——.—.)t coin-
cides with the given one. - T :

Note A circline is uniguely determ;‘ned by a pair of inverse points
and a point on the circline,

10.3 The unit circle (zl=1)

Any points & and 1/& in C are Inverse' with respect to the unit
circle, and the point 1 lies on the circle., Hence, by Theorem 10.2,
the equation can be written : .

l Z—a ’_ 1~ t]:-:t'

z—1/& |~ |129/5 | thatis,
Z—a . _
&z—llml (since jo — 1] =|a 1.

10.4 Representation of circular arcs

If P is a variable point on a circular are with endpoints A and B,

then pw=/APB is constant. From Fig. 10.2, p=0~¢, where

arg(z —a) = @ and arg(z ~ B) = ¢. Hence the arc APB has equation
arg(z —a)—arg(z—B) =  (mod 27),

that is,

arg(j:g)fu (mOdZTr). (z5# o, B).
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Fig. 10.2

Similarly the equation of the arc AQB is (note the signs!)

wp((=5)=~tr-w) Gmod2) Gt

10.5 Coaxal circles : -

For fixed @ and B we have, as A and & vary, two families of

circles:
(1) Cile, B): circles

Z— _
z—8

having « and £ as inverse points, and
(2) Cule, B): ecixcles

arg(:.:;) - {i(ﬂ.m yy (mod2m),

A,

through « and 3. _

Each of the families is said to form a coaxal system. These
systems of circles have interesting geometric properties. It can be
shown: for example, that any member of C,(e, 8) cuts any member
of Cy(e, 8) orthogonally.
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Mébius transformations, exponentials,
below.

Mobius transformations

10.9 Definition

A Mbbius transformation is a mapping of the form

az+b
P (@ b, c,deC, ad — bcs 0).

frzes

(The excluded case ad —~be =

The Mé&bius transformation
itself, with (by definition) f(~d/c) = w
is one-to-one and onto, with inverse

0 produces a constant mappi'ng.)._
s fleo)y=a/c. 'I'helmap FiCas

dw—ph
a—cw

Fltiwes

also a Mdbius transformatio
transformations form a group under the o

Z >z (¢ real)
z > Rx (R.>O)
Zr>z+a (aeQ)
zw>1/z

(anticlockwise rotation through ¢),
(stretching by a factor of R),
(translation by a),

(inversion).
Suppose f(z)=(az -+ b}(cz+d). Then f

(2) = (ad — bc)/(cz + dy,
which shows that f is conformal og C\{—d/c}. Theorem 10.10

W much room for manoeuvre we have in constructing
Mobius transformations. o

10.10 ‘Thecrem

Suppose each of {z;, z,, z;} and {Wi, wo, wilisa triple of distinct
points in €. Then there exists a unique M&bius fransformation f
such that f(z)=w, (k=1 »2,3), given by fiz e = f(z), where
G () - (=)=

W= w3/ \wy— Wi Z =2 ’

Zy—2Zy

and powers discusseq

f is best viewed as a mapping of C to .
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=)

gz |—— j—2

Z ™ Z3/ \Za— 24

takes zy, Z,, and z3 to 0, 1, and w«, respectively. Construct k in the

same way as g, to map wy, wp, and ws to 0,1, and . Then

f=h"tsg is the map in the statement of the theorem and flz) =
B 3 ) ' - -

Wkl(xlgr l?.lil"li%[l’lt‘-.‘!)]ess it is enough to show‘ t1_1at the only Iv_Iobtxlllxs

transformation f:z > (az+8)/(cz+d) fixing 0, 1, :alt)nf 1oof I:Ce he:l

identity map. The conditions f(0) =0, f(w)=°°,. and1 lf( =1 fo In

turn b=0,c=0, and a =d, so that f(z)=z for all z.

Proof. The map

One- can show that Mobius transformations.map cn:clmes _tg
circlines by using any of the standard representations of czrc@es and |
lines. The proof below shows more: the preservation of inverse
points.

10.11 Theorem

' ircline with i poi d B (a, BeC,a#p)
be a circline with inverse points « an =
iﬁé ISet 1? be a Mdébius transformation. Then f maps .S to a circline
with inverse points f(a) and f(8). .

* Proof. We use Theorem 10.2 to write the equation of S in the

form |(z—@)/(z—B)=A. Suppose w=f(z)=(az+b)/(cz+d), so
z = (dw — b)/(a-cw). Then

(ec+d)yw—(aa+b) -
\ (Be+dyw—(Ba+b)

We may rewrite this as

A

i \w—f(a) = Bc+d\, if ec-+d#0 and Be-+d#0, or
@ w—f(B) ac+d
(11) IW——f(oc)[=)u Bai—g , fac+d#0 and Bc+d=0, ox
ac
1 +b " _ S dLO.
Gy fw—f@l=+ ;3+d, if ac+d=0 and Bc+d+

‘ Iil at C an C ATl [ both bﬁ ZEIO.) 11'1 Bacll case th.e
ote th [+ -+ d d B + d C (0]
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cases (if) and (iii) the images of the original inverse points are the
centre of the circle and the point o, O

10.12 Theorem

There exists a Mbbius transformation mapping any given circline
to any other given circline,

10.13  Examples

(1) To find the images under frzmsw=(z—1)"1 of (a) the real
axis, (b) the Imaginary axis, (¢) the circle centre 0, radius r,

Solmiion (a) The real axis is mapped to the circline through
f(0)=~1, F(1)=co, fl0)=0, viz. the real axis, (Alternatively one
may use the fact thai the real axis ha_s equation. z =z)

(b) The imaginary axis hag equation |z —1|=|z 1] and is mapped
to the circline with equation [2w +1| =1, which is the circle with
centre —3 and radius 3, ' -
(c) The required image has equation [w+ U=riwl. I r=1, jt-is
the line Re w = 3 Hr1, itis a circle with —1 and 0 ag inverse
points. It has the points (£r—1)"* as the ends of a diameter (see
Fig. 10.1), and hence hasg centre (r*— 1)~* and radjus 7 [1—r3t. 4
(2) To find all Mbbiug transformationg mapping the unit circle T to
itself and mapping « to 0. ’

transformation taking o, 1,and 0/&to 1, e3¢, and oo, respectively, is
given by Theorem 10.10 to be z+> w.where

w _( Z~a )(1—1/&)'__ ( z—ae)(&-—l)
e"  \z-1/ 1-a/ \gz—1 l—a/’
But |1-—a!=]1—&[, 80, for some real number W,

w =e“"(*_z——-—-£). L—j
z—1 :

4]
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=g

L4 :—ﬁ
Fig. 10.5

Zne]

10.14 Mappings of regions bounded by circular arcs

A Mbbius transformation can. be used, inter.alia, to map a lézinegz;
shaped region bounded by circular ‘arcs onto a sector. Let
shown in Fig. 10.5. By 10.4, .

Z—a
G = {2:61<arg (;__B')<2W——“62}‘

: The Mobius transformation f:z «>{(z —a)/(z—B) maps G confor-
mally onto the sector
S={w:0;,<argw <28}

ing ; circular ares ‘ending at S8
effect of mapping § to oo; circu ' _
?rlglt]:fc:?; to half-lines. Observe also that, becausie f i}i ionf;;rgi
S at 0 equals the angle p betwe !
at «, the angle sabtended by . L Derween the
l i t the image sector is
' unding arcs of G. Note tha_ 1
Ec?mpletgly by the image of a single point otl-:nﬂeri ‘Ehaneafﬂgrcﬁ;):z
a taking the map z— k(z — a)/(z — ), with & —CT . E-(P =) chosen
suitably, the image sector can be swung round into any
ition. ‘ _ . by twe
po’?his argument deals with mappings of regions _bor;c;ecia }lgrc\iz;e
members of a coaxal system C,(a, f8) as de!;’ionuefd;r; b;’ -two roise
i i f a region
.§:.corcerns the mapping o
'lgr‘;z:entric circles, which form members of some c;oaxal system

Ci(a, B).



176 I Introduction to complex analysis

while the image of the half-line arg z = u is

u? v

cos’i  sinu

which is a hyperbola.

Examples on building conformal mappings

This section gives examples to show how we can combine the
mappings introduced above to map an assortment of regions onto
simpler ones such as discs and half-planes.

10.13  Example

To find a conformal mapping of the semicircular region” G =
"{z:Imz>0,|z{<1} onto D(0; 1).

Solution.
Stage 1 By 10.14, we can express G as

. Ol z—-.l) } E
- {Z-2w<arg(z+1 <

(note that G is bounded by arcs through &1 subtending angles i
and 0). Define g(z)= (z-DNz+1)=¢ Under g G is mapped
conformally to the quadrant Q={{:dv<arg f <=l

Stage 2 Let + =7 Under {=> 7, Q is mapped conformaily to the
open lower half-plane {r:m<arg 7<2w}. (Here the non-.
conformality of £ ~» {2 at {=0 (# Q) works to our advantage.)

Stage 3 The open lower half-plane is {r- Jr+il<|r—il} and so is
mapped to {w : |w|<1} under ++» (r+Dr =) =w.

A suitable map f can now be seen to be
(z=1)*+i(z + 1)* ,(22+ 2iz 1)
(z=~1P-i(z+ 1) \ZP=2is 41

this maps G onto D(0; 1) by construction and, as the composite of
conformal maps, is conformal, . [

fizrw=

;"

i — m er———,
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Stage |

Stage 2

Tig. 10.8

10.19 Example . -
To find a’ conformal mapping of the semi-infinite strip H=
{3:Fnz>0,0<Rez<n} om.:o a hali-plane.

Solation.

‘S.tage 1 Put £=e" Then [f{l=e™% and arg {=Rez (mod 2w).

So H is mapped by z+~> { conformally on_to
G={r:0<|¢{|<1,0<arg {<m}.

-now proceed as in Stages 1 and 2 of Example
?t(;!.glg.g.zl\{[gﬁr]: ::ilci;jelc(:itl;, wg can use the'Joukowski trz:msfoGrrr{atEl;
¢ > w=3(+¢"Y, which is cohfqn:nal in G. The_ regi;o(ra b B}S{ iy
urﬁon, over 0<r<1, of the sem}cncular'arcs &= rl'le D=t ;
see Fig. 10.9. Each of these arcs is mapped to an elliptic

u? v*

-+ e =
Hr+r ™ -
The union of these images covers the open lower half—Piane, onto
which H is thus mapped by the composite transformation

z+>w=4(e"+e ") =cos z.

1, -v<<0 (£=u-+iv).
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Stage | Stage 2

Fig. 10.9

10.20 Example

To find a conformal mapping of theAregion G exterior to both the -

c1rcle_s |z 2 1= /2" onto the region ¢ exterior to the unit circle
Solution. |

Stage 1 The region G is bou ! .
nded b .
thogonally at +i (see Fig. 10.1 0). 'Take,y circular arcs meeting or-

?tafge 2 Working Jrom the opposite end, we can realize (=
W le >1} as the mage under the conformalrmap

T4+ 1
T—1

of the right half-plane § = {7 . =1 <|r+ 18

h:res

=w

Stage 3 To transform S onto § i
Wwe seek to multiply angles at 0 b
a factor of 2, Formally ¢ +» 5= 2* provides the map we warnt, bli;;

it

o e B
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Fig. 10.10

- we have to take care because this is a multifunction. We start with

the z-plane cut along [—i,i]. In this cut plane there exists a
holomorphic branch k of [z —D/(z+DF]. The map we finally re-

" quire is f=h o k. This sends z to w where [(z ~D)/(z+D)]*=1* and

(r+ D/ {v— 1) = w. Hence flz)=w, where

—ah2 + 3 N
-y :
z4i w1
10.21 Remarks

Because of the way they act on circlines, Mobius transformations,
powers, and exponentials are of most use for mapping regions
whose boundaries are made up of circular arcs, lines, and line
segments. However their scope is, even so, limited. For example,
to handle regions with polygonal boundaries, one must introduce:
the Schwarz-Christoffel transformation, which is awkwardly defined

by an integral:
7 J E—zy -z G-z ™ AL
(1]




