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distinguish these branches, we can fix one of the two values of f(z) at some
point of the domain G, e.g., at the point co. According to (11.13), z becomes
infinite either for w = 0 or w = co. Therefore the branch f,(z) of (11.12)
satisfying the condition f(00) = 0 maps G onto I{y), while the branch f,(z)
satisfying the condition f3(e0) = oo maps G onto E(y). Instead of G, we
might have chosen the domain G’ whose boundary consists of the infinite
segment of the real axis joining the points —1 and 1, or the domains Gy and
G, whose boundaries are the upper and lower unit semicircles.

56. The Logarithm

The inverse of the function

z=¢" = e'{cos v + isinv)

is defined for any value of z different from 0 and co, and is represented by .

the formula
we=1In|z| + iArgz

[ef. (9.25)]. This function, which is obviously multiple-valued (in fact,
infinite-valued), is called the logarithm and is denoted by Ln z, i.e.,

Lnz =ln|z| + i Argz, (11.14)
by definition. The value

In|z| + iargz

of the logarithm is called the principal value, and is denoted by In z. Then
(11.14) can be written in the form

Lnz=Inz+ 2kni (f=0,+1, £2,...). (11.15)

It follows that every complex number different from O and o0 has infinitely
many logarithms (i.e., values of the function Lnz), and any two of these
logarithms differ by an integral multiple of 2mi.

If z is a positive real number, the principal value of the logarithm is just -

In |z|, which is exactly what is meant by the logarithm in elementary
mathematics; for example,

Inl=0, Ine=1, In2=069315...

For negative real numbers and for imaginary numbers, the principal value
of the logarithm is an imaginary number

In|z| + fargz  (argz # 0, —m < argz € 7

and all the other values of the logarithm are also imaginary numbers,

N
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~ calculated by using (11.15); for example,

Lo(—1) = 2k + i,
Ln{—2) = 0.69315 ... +(2k + )i,

Lo(l — i) =In V2 — %" + eni = 034657 ... +(8k ~ 1) "ZI-

The familiar rules for finding logarithms of products and quotients
remain valid for the multiple-valued logarithms of complex numbers, since
Ln(z,zz) = In |z12| + i Arg (21?2)

= In|z,| + In |z,| + i(Argz, -+ Arg zo) (11.16)
=Lnz + Lnz,

Cand

InZ =24 z'Argi’:
Za Zy Zg
= In |z;} — In |z5| + i(Argz, — Argzy) (11.17)
=Inz; — Lnz,,
wlhere z; and z, are arbitrary nonzero complex numbers. In (11.16) and

- (11.17), both the left and right-hand sides (for fixed z; and z,) represent
- infinite sets of complex numbers, and the equalities have to be understood
in the sense that these two sets are equal, i.e., have the same members.
* Failure to remember this fact can lead to paradoxical results. For example, in

a sophism constructed by John Bernoulli, it is claimed that Ln(—2z) = Lnzfor

. arbitrary z # 0, and the following chain of equalities is adduced as ““ proof™:

1. Ln [{~2)?] = Ln (z%);

2.Ln(~z) + Ln(—z)=Lnz + Lnz;
3.2ln(—z2) =21Lnz;

4, In(—2)=Lnz

- However, the conclusion that Ln (~z) = Ln z is false, since

Lnz=1In|z| + iArgz = In |z| + fargz + 2k,
In(—z) =1In|—z| + iArg(—2) =ln|z| + iargz + 2k + D,

“-and obviously none of the numbers representing the values of Ln z is the

same as any of the numbers representing the values of Ln (—z). The fallacy

“in the “proof” occurs in going from equality 2 to equality 3. The first

of these refations is based on formula (11.16), and is of course true.
However, the sum Ln(—z) + Ln (—z) cannot be replaced by 2 Ln (—2z),
since the sum in guestion is obtained from the set of numbers Ln (—z) by

" adding each of these numbers to itself and to a/f the other numbers of the

set Ln (—z), whereas the set 2 Ln (—z) is obtained by simply doubling all

~the numbers Ln{—z), ie., by adding each such number to itself only.”

7 The following simple example may help clarify the situation: Let A be the set
consisting of the two numbers 0 and 1. Then A4 4 A is the set consisting of the three
numbers 0 + 0 =0,0+ 1 = land 1 + 1 = 2, whereas the set 24 consists only of two

numbers 2-0 = 0 and 2-1 = 2.
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Therefore
Ln(-2) + Ln{—z) # 2Ln(-2),

and by the same token,
Lnz+ Lnzs#2Lnez
Setting z, = z, = z # 0 in (11.17), we obtain the relation

Lil =Lnz — Lng, (11.18)

which is a correct formula. However, the right-hand side of (11.18) cannot
be replaced by 0, since here we are talking about the set of all possible
differences between values of the logarithm of the same number. This set
consists of all possible multiples of 2=/, so that to be perfectly explicit, we
should write (11.18) as ’

Ln I = 2k=i (=0, £1, +2,...).

We now study the single-valued branches of the logarithm. We begin by
finding domains of univalence for the exponential function z = ¥, which is
the inverse of the logarithm w = La z. All the numbers w for which e”
takes any given value z are given by the formula

w=Inlz| + iArgz

[ef. (9.95)], i.c., all the numbers w can be obtained by shifting any one
of them by 2kmi, where k=0, 1, £2,.... Therefore a domain of
univalence for z = e* cannot contain any pair of points such that one point
can be obtained from the other by a shift of this kind. The simplest way to
satisfy this requirement is to start with an open rectilinear strip

Goivpy < 0 < vy + 2

of width 2= parallel to the real axis in the w-plane. Then, subjecting %, to
all possible shifts of the form 2k, we obtain an infinite family of domains
of univalence:

Givg + 2k < v < v+ 2k + D (=0, +1, £2,...).

Obviously, every point of the w-plane is either an interior point of a domain
%, or a boundary point of two domains ¥, and %, [see Figure 11.5(b)).
The image (under z = ¢*) of each of the strips @, is the same domain G in
the z-plane, i.e., the interior of an angle of 2= radians with its vertex at the
origin. The boundary of G is a single ray of inclination v, emanating from the
origin [see Figure 11.5(a)]. We can define infinitely many different single-
valued branches of Ln z on the domain G by specifying that the kth branch
Lo,z (k =0, £1, £2,...) have %, as its range. Each of these branches
is uniquely characterized by the value wp which it assigns to any given

.

1
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point z, € G, since one and only one of the domains %, contains the point wy.
Expressed somewhat differently,

Ln, z = In jz| + [ Arg, 2,
where Arg, z is the valué of the argument satisfying the inequality
vo + 2kn < Argpz < wg + 2(k + D= k=0, %1, £2,..0.

Moreover, since w = Lny z is a one-to-one continuous mapping of G onto
@, and since z = ¢¥ has a nonzero derivative ¥ on %,, the branches Ln, z
all have nonzero derivatives on G, i.e.,

d

1 1
Lnkz=-é;=—z- (k=0,i1,i2,...)-

&

{cf. Rule 5, p. 109).
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The points 0 and co are both branch points of the function Ln z. To see

“this, suppose that at a point z, € G we choose a value of Ln z corresponding
“to the branch Ln, z and represented by the point

wy = Ln zo = In |20} + { Argy 2o,

: belonging to the strip %,. Then, as z moves continuously around the circle

Iz} = |zo| in the counterclockwise direction, starting from the point z,, the
value of
w=1Iniz| + {Argz {11.19)

R A
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changes continuously, and when z returns to its original value z,, (11.19)
goes into the value

Weer = In|zg| + 7§ ATge 20 + 2nf = In |zo| + 7 Arg,yy 26 = Lng,, zo.
Thus, since the point z, € G is arbitrary, one circuit around the origin z = 0
{or about the point at infinily z = 0} causes the branch Lny z to change
continuously into the branch Ln,,, z.® Obviously, as we make additional

circuits around the origin in the counterclockwise direction, the branch Ln, z
undergoes the infinite sequence of transformations

L,z LEngey 2, Lngoaz—Lng,ez, Lngiaz—>LNgizz,. ..,

so that Lny z is never carried back into itself. For this reason, the points 0
and oo are called branch points of infinite order or logarithmic branch points.

Remark. Single-valued branches of the function Ln z can be defined on
domains more general than . Let v be any Jordan curve joining the points
z = 0 and z = co. Then the curve v has infinitely many images I’y (k = 0,
+1, +2,...) under the mapping w = Ln z, The curves I',, which are all
Jordan curves, divide the w-plane into infinitely many open curvilinear strips
Dy, where the boundary of 2;, consists of the pair of curves I’y and 'y, 4,
and 2, does not contain any of the other curves I',. Thus we can define a
countable family of single-valued branches of Ln z on the domain D with
boundary y by specifying that the kth branch (Ln z),, wherek =0, +1, £2,, ..,
have 2, as its range.® Clearly,

(Ln z), = (Ln z); -+ 2n{k — /)i,
and, as before, we find that .
d 1
A (Ln 2), = = (11.20)
Since (11.20) is independent of how the branches of Ln z are defined, we can

simply write

d I
ELI‘IZ-««E:

where by the left-hand side we mean any single-valued branch of Ln z,

defined on a domain containing the given point z.

57, The Function 2% Exponentials and Logarithms to an
Arbitrary Base

We begin by defining the expression 4%, where a # 0 and o are arbitrary

complex numbers. We first assume that « is real, and examine in turn the

cases where « is an integer, a rational number and an irrational number,

U Similarly, one circuit around the origin in the opposite (i.e., clockwise) direction
causes the branch Lny z to change continuously into the branch Lng., z,
? Note the distinction between Lny z and (Lo 2)g.
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Case 1. If « = # is an integer, then

a* = a* = |a|* [cos (n Arg ) + isin (n Arg a)l, (11.21)
and a* has just one value.
Case 2. If & = r is a rational number, then r = m/n where m and n > ‘0
are relatively prime integers. As we already know [cf. formula (2.15)], in
this case,

a* = g™ = |a|™" [cos (%i Arg a) + isin (% Arg a)]

|a|” [cos (r Arg @) -+ isin (r Arg a)],

i

and a* has n different values.

Case 3. If « = p is an irrational number, we define a” by continuity, i.e.,
as the limit

lim o = lim |a|™ [cos {r, Arga) + isin (r, Arga)],  (11.23)
n— o

n—+

where {r.} is an arbitrary sequence of irrational numbers converging to
o. In taking the limit (11.23), we hold Arg « fixed. Then

lim r, Arga = p Arga,

and (11.23) implies (cf. p. 34)
a® = |a|® [cos (p Arg a) + isin (p Arg a)]. (11.24)

To obtain all the values of @, we now let Arg a take all its values. Since
two values of ¢ Arg a differ by a number of the form 2kpm, where k is a
nonzero integer, and since kp can never be an integer, it follows that
different values of Arg a give rise to different values of a®. Thus, in this
case, a* has infinitely many different values.

Remark. It should be noted that formulas (11.21), (11.22) and (11.24) are

all special cases of the formula

& = |a|* [cos (u Atg a) + isin (x Arg a)],

‘which can be written in the form

a® = exp (« In |a|)cos (« Arg &) - i sin (x Arg a)] (11.25)
= exp («In |a| + iz Arg @) = exp (« Ln a).

For the time being, we make a distinction between exp z and &, _with only
“the former being used to denote the exponential function defined in Sec. 38

“(see Example 2 below).

Now let o be an arbitrary complex number. Observing that in this case

;'f_he right-hand side of (11.25) still has meaning, we write

a* = exp (e Ln ),
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by definition. If o is imaginary, all the values of 4* corresponding to different
v.a!ues of Ln a (or equivalently, to different values of Arg ) are also different
since two distinct values of « Ln a differ by a number of the form 2ri, whichi
cannot be an integral multiple of 2z if « is imaginary. It follows from (11.25)

and the addition theorem for the exponential that

a“1a*z = exp {«; Ln a) exp (x; Ln @) = exp [(¢, + o) Lna] = g®1+%,
(11.26)

Moreover, we have the following rule for raising a power to a power:

(@*)" = [exp (e Ln @)}’ = exp {§ Ln [exp (« Ln &)}
exp (Pe Ln a) = P,

(11.27)

Both (11.26) and (11.27) are the same as the corresponding rules for real
numbers.

Example 1.

]

IJﬁ

exp (V2In 1) = exp QRiemvV'2i) :
= cos (2knV'2) + isin (2knV2) (k=0 £1, +2,...).
Example 2. ‘

=z

e°

exp (zLne) = exp [z(1 + 2fri)]

=expzexp (2kmiz)  (k=0, +1, £2,...). (11.28)

_It.follows from (11.28) that only one of the values of the power e*
coincides with exp z. In fact, the other values are
exp z exp (2wiz), exp zexp (—2wiz), ...

In. particular, only one of the values of e* {where x is a real number) coincides
with the positive real number exp x, and in this case, the other values are

exp x exp (2mix), exp x exp (—2wix), ... (11.29)

[If x is rational, there are only a finite number of different values (11.29)
but if x is irrational, there are infinitely many different values. ] Despite-this’
we shall continue to denote the exponential function by €*, as well as by exp z.,
This use of the “multiple-valued symbol™ &* to denote a single number is
analogous to the conventional use of the symbol V& (where a is a positive

real number) to denote the unique positive value of the nth root of @ (cf.
footnote 6, p. 18). .

Example 3.
i = exp (i Ln i) = exp [;(“-2-‘ - 21;::5)] = eE-DmE (0 41, £2,...),

Thus all the infinitely many values of i! are positive real numbers, which
can be arbitrarily small or arbitrarily large.

)
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We are now in a position to study the functions z* and &%, where « and

a # 0 are arbitrary complex numbers. First we consider the function

@) =2

(which in general is defined only for z # 0), and examine in turn the cases
where « is an integer, a rational number and an irrational or imaginary
number.

Case 1. If « = #n is an integer, then
f@ =z =2

is a particularly simple rational function. In this case, f{(z) is defined for
z = 0, where it has a zero (if n > 0) or a pole (if n < 0}.

Case 2. If & = r is a rational number, then r = m/n where m and n > 0
are relatively prime integers, and hence

f(z) = znin = V.

In this case, /() is an n-valued function, with branch points z = 0 and
z = o0 of order n — 1. Let v be any Jordan curve joining 0 and oo, and
let G be the domain with boundary y. Then we can define # single-valued
differentiable branches of f{(z) on G, which change continuously into each
other as we go around any closed Jordan curve whose interior contains
the origin.

Cuase 3. If « is not a rational number, i.e., if « is an irrational real number
or an imaginary number, then f(z) = 2z* is an infinite-valued function, all
of whose values are given by the formula

z% = exp (¢ Ln z).

In this case, z = 0 and z = o0 are branch points (as in Case 2), but now
they are of infinite order. In fact, if we go around the point z = 0 (say,
in the positive direction), Arg z varies continuously and increases by 2.
Therefore the value of =« Ln z increases by 2mix, i.e., f(z) is multiplied
by factor e?™e« 3 1.

Next we consider the exponential to the base a, i.e., the function
o® = exp{z Lna),

defined for any finite z and any a # 0. To obtain a definite single-valued
branch of /(z), it is sufficient to fix one of the values of Ln g, say

Ina=~56=Ina 4 2kmi (11.30)

After this has been done, we obtain a single-valued, everywhere differentiable
function exp (bz). Taking all possible values of Ln a, we obtain all possible
single-valued branches of the function a®. Since two values of Ln a differ by

S

:?;
b
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a term of the form 2kni, where k& is an integer, two branches of the function o*
differ by a factor of the form exp (2kwiz). This factor is also a single-valued,
everywhere differentiable function, which takes the value 1 only when z is a
rational number of the form m/k (where m is an arbitrary integer).

Remark. The branches of the multiple-valued function ¢® differ in an
essential way from those of the multiple-valued functions considered
previously. In all the cases considered so far, we can find points of the
extended plane, called branch points, with the property that by going around
each branch point along suitable closed Jordan curves we can carry any
single-valued branch into any other. However, in the case of the function
@°, this is impossible, since every branch is a single-vatued continuous
function defined on the whole finite plane (and not on some domain whose
boundary consists of certain curves joining the branch points). In fact, dfter
making a circuit around any (finite) closed Jordan curve whatsoever, we
returnt to the original complex number z (perhaps with a different value of
the argument) and hence to the same value of the function exp (bz), where b
is a fixed value of Ln . Thus the multiple-valued function «® has no branch
points at all, and its single-valued branches cannot be carried continuously
into each other by making circuits around closed Jordan curves. In other
words, the different branches can be regarded as self-contained, independent,
single-valued, everywhere differentiable functions,’® i.e., as nothing more or
less than the infinite set of entire functions

exp(zlna), exp[zlna + 2=/}, explz(lna — 2=i)], ...

The fact that all these different entire functions can be represented as branches
of a single infinite-valued function «* is no more surprising than the fact that
sin z and —sin z can be regarded as branches of the double-valued function

V1 = cos?z, (11.31)
or that cosh z and sinh z can be regarded as branches of the double-valued
function

texp z + Vexp (—22)]. (11.32)
[It should be noted that just like the function a%, the functions {11.31) and
(11.32) have no branch points, ]

Finally we consider the logarithm to the base a, denoted by Log, z and
defined as the inverse of the function

z = g" = exp (wLnag). (11.33)

10 The same situation has already been encountered in Example 2 above, in connection
with the function e® (where @ = e and In g = ). However, in the case of e, we agreed
to interpret e as the particular single-valued branch exp z, i.¢., as the branch which takes
real values when z is real (see p. 136). We shall make the same choice whenever a is a
positive real number,
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If we again write (11.30), thereby choosing a branch of a*, (11.33} becomes
z = exp (bw),

and hence

w=TLog, z = éLn z (11.34)

which differs from Ln z only by the factor 1/b. Since b is a value of Ln g, it

follows from (11.34) that

Inz

— 1.35
ILna (1 )

Log,z =

“where in the denominator we fix one of the infinitely many values of Lna
“(which is then kept the same for all z). Thus, to define Log, z, we must
“‘specify not only the base a, but also a particular value of Ln a.

Example 1. Let ¢ = e, and choose the value of Ln e equal {0 1, Then

Log.z = Lne,

+which is just the ordinary definition of the natural logarithm. However, we

can also choose another value of Lne, say 1 + 2=/ In this case, (11.35)

“pives

Lnz

Loge 2 = T om

[t is easy to see that with this second definition of the natural logarithm,
Log, z will have a real valué (in fact, exactly one) only if z = &*, where k& is

i Example 2. Let a = 10, and choose the value of Ln 10 equal to

1 1
2.30259... = W = "j}.'
~Then we have
| Logioz = M Lnz = (0.43429...) Ln z. (11.36)

This definition of the common logarithm of an arbitrary complex number
z # 0 agrees with the ordinary definition of the common logarithm log; x
“a positive real number x. In fact, setting z = x in (11.36) and taking
principal values, we obtain

: logyo x = (0.43429 .. .) In x.

Example 3. ¥ ¢ = 1, we cannot define Log, z by using the principal
value of Ln 1, since In 1 = 0. Instead, suppose we choose the value of Ln 1
equal to 2w, obtaining

Inz 1 i
Logz = 5— = EArgz _ﬁ"n"ln 2]
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With this definition, all the values of Log, z are real if {z| = 1 and imaginary
if |z]| # I. Thus, only numbers corresponding to points on the unit circle
have real numbers as their logarithms to the base 1, and for such numbers
Log, z = Arg z.

58. The Mapping w = Arc cos z

First we study the function w = Arc cos z, defined as the (multiple-valued)
inverse of the {function

H

Z = COS W.
Replacing cos w by
elw + e—iw
__“‘_2 il
and writing
e =1 (11.37)
for brevity (cf. Sec. 41), we find that ¢ satisfies the equation
1 1
3 (I + ?) =z
or
P —2zt+ 1 =0, (11.38)
with solution**
t=2z 4 Vz? — 1. . (11.39

It follows from (11.37) and (11.39) that

w=Arccosz= —iLnt = —iLln(z + V2% = 1). (11.40)

We now investigate the branch points of the multiple-valued function
w = Arc cos z, which, according to (11.40), involves both a square root and
a logarithm. Therefore we first examine the behavior of (11.40) at +1 (the
branch points of Vz% — 1), and thenat ¢ = 0and = © {the branch points
of Lnt).

1. The function Arc cos z has algebraic branch points at + 1. In fact,‘as
7 makes one circuit around any closed Jordan curve whose interior
contains either of the points +1 (but not the other), each value of

A/Z% = 1 is replaced by its negative. Therefore each root .

t=z+ Vz? -1

11 e do not write + in front of the radical, since the square root is already Pnder-
stoogd to be double-valued [cf. (9.52)]. Note that both numbers (11.39) are nonzero (in fact,
their product equals 1).

.
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of the quadratic equation (11.38) is replaced by the other root ¢!
{(recall that the product of the two roots is 1). Correspondingly, the
expression —fLn¢t is replaced by —iLn¢™*, which differs from
the first expression if ¢ # ¢~ But ¢t = ¢ implies t = +1 and hence
£ = -1, as can be seen from (11.38) or (11.39). This case cannot
occur, since by hypothesis our Jordan curve does not pass through
either of the points z = 1. Therefore the value of Arc cos z actually

does change as a result of the circuit around z = | or z = —1, and
hence the points z = =1 are both branch points, in fact, branch points
of order 1.

2. The function Arc cos z has a logarithmic branch point at . According
to Sec. 31, 1 makes a circuit around a circle in the ¢-plane with center
t = 0 if and only if z makes a circuit around an ellipse in the z-plane
with foci at z = 4+ 1. Thus,as the point z traces out an ellipse with
foci +1, Argt changes by 42w, and hence so does —iLn ¢ Since
any neighborhood of the point at infinity contains an ellipse with
foei 4 I, the point < is a branch point of Arc cos z, in fact, a branch
point of infinite order.?®

3. The function Arccos z has no branch points in the extended z-plane
except those already indicated, ie., 41 and oo, In fact, if z, # +1,
zy ¥ oo, then, corresponding to the value z = z;, equation (11.38)
has two roots f; and ¢y, which satisfy the condition t3fg = 1, and are
different from 0, +1, and . We can find disjoint neighborhoods
N (1o} and A7(z5} which are so small that they do not contain the
points 0 and oo, and are such that neither neighborhood contains a
pair of points 7y, !, satisfying the condition #¢, = 1. To see this, let
v be the unit circle |¢| = 1, and suppose that ¢, ¢ v, say |fg| < I. Then
|ts] > 1 and hence, if we choose A"(ry) = I{y) and A(t5) = Efy),
neither neighborhood contains a pair of points 1,, £, such that 1,2, = 1
(see Figure 11.6). On the other hand, if ;e vy, then, since 1 # +1,
ty belongs to either the upper half-plane Ily:Im ¢ > 0 or the lower
half-plane TI.:Im¢ < 0, say to I, Then #;ey N Iy, and in this
case it is sufficient to choose A7(ty) < I, A (tg) < Iy

In any case, the function

z= % (z + %) (11.41)

is one-to-one on each of the neighborhoods A#7(¢;) and A7(ty), since it .
can only take the same value at a pair of peints #,, f, satisfying the

12 A circuit around any ellipse with foci at the points z = 1 can also be regarded
as a circuit around the point z = 0. However, it should bs noted that none of these
ellipses lies entirely in the neighborhood |z} < e if e < 1, and in fact it turns out that
z = { is not a branch point of Arccos z.




