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ELEMENTARY
MULTIPLE-VALUED FUNCTIONS

53. Single-Valued Branches. Univalent Functions

Except for the Mébius transformations, which are one-to-one mappings
of the extended plane onto itsclf, the entire and meromorphic functions
w = f(z) studied so far are such that the equation f(z) = 4 has multiple
roots, which are distinct except for certain special values of 4. This means
that the mapping w = £(2) is not one-to-one, i.e., that the inverse function
z = S*(w) is multiple-valued. Before the concepts and results obtained for
single-valued functions can be applied to the multiple-valued function
JF=1(w), we must find domains on which f ~Y(w) is no longer multiple-valued
thereby constructing so-called single-valued branches of JS(w). This has’
already been done in certain special cases, e g., for the inverses of the functions

w=(z—-a" w=¢e, w=cosz

(see Secs. 37, 39, 42).1 The general procedure goes as follows:

Suppos.e w = f(2) is a single-valued function which is defined and wide-
sense continuous on a domain G of the extended z-plane, but which is not
one—to-on_e on G. Suppose we can find a countabile family of disjoint
subdomains G; < G, G, < G, . .. such that every point of G s either a point
of one of the subdomains G, G,,... or a common boundary peint of at
least two subdomains Gy, G, and such that the function w = f(2)is one-to-one

S 1 35(;30 also the preliminary discussion of the concept of a single-valued branch in
ec, 30,
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on every subdomain G,. Thus, if E is the set of all points of G which are

common boundary points of at least two subdomains Gy, (;, we have the
decomposition

G=EJUG UG- (11.1)

. Then every image %, = f(G,), %2 = f(Gs), . .. is also a domain (see Theorem

6.1), and
' T =f(()=fEYVE vF U ...

' By hypothesis, the function z = f~*(w) is multiple-valued on ¥, i.e., f~(w)
“can take any of a whole set of values E,, < G at any point w ¢ %. However,
“suppose we now define on each domain &, a function f;"'(w) such that

f WD =E,nG.  (weF).

" Since the set E, N G, consists of one and only one point, fi (w) is single-
‘valued and (wide-sense) continuous on ¥, (see Theorem 6.1), and obviously
Gy, = fi7 Y(#¥,). Bach of the functions fiy*(w), k = 1,2,..., of which there
‘may be infinitely many, is called a single-valued branch of the function

7 w).

Remark I. Tt should be noted that the character of the domains %, and
of the single-valued branches f7X(w) depends in an essential way on just

“how the domain G is decomposed into subdomains Gy. In the simplest
_cases, a decomposition of G can be found such that all the domains %, are
- the same.

Remark 2. For an arbitrary wide-sense continuous function w = f{(z),

“the decomposition (11.1) is not possible. However, considerations which
“will not be given here show that if the function f(z) $# const is wide-sense
- continuous on a domain G, and analytic on G except possibly ecnasetf = &

‘consisting entirely of isolated points (see Problem 3.16), then the decom-

- position (11.1) is always possible (actually, in infinitely many ways). A
- function f(z) which is wide-sense continuous on a domain G, and analytic on
" G except possibly on a set 7 © G consisting entirely of isolated points, is
' said to be univalent (synonymously, schiicht or simple) on G if f(z,) # f(z2)

whenever z,, z, € G and z; # z,, Le., if f(z) is one-to-one en G. On the

“other hand, a function f(z) which is wide-sense continuous on a domain G,
“and analytic on G except possibly on a set J = G consisting entirely of
_isolated points, is said to be multivalent on G if there exists at least one pair
. of points z,, z; € G, z; # =5, such that f(z;) = f(z,). With this terminology,
" the result just mentioned takes the following form: If the function f{z) #
- const is multivalent on a domain G, then G has a decomposition (11.1) such
. that f(z) is univalent on every subdomain Gy. The domains G, (k = 1,2,...)
- are called domains of univalence for the function w = f{(z). Moreover, the
© inverse function z = f~*(w) is single-valued, in fact univalent, on each of the
“domains %, = f(Gy), k = 1,2,... (cf. Rule 5, p. 109).




in s cnapter, we shall illustrate the above considerations by applying
them to certain elementary multiple-valued functions. However, we shall
not have to rely on the result cited in Remark 2, since in every case the
decomposition of the domain G into domains of univalence can be obtained
by using known properties of elementary functions.

54. The Mapping w = vz
Let # > | be an integer, and consider the function

w= vz, (11.2)

which is the inverse of the function z = w™. For every value of z except 0
and oo, (11.2) takes n different values, given by the formula

w= vz (cos-‘A% + isin A——»f—z) (1L3)

Forz = 0 or z = o, the function w = V7 takes just one value, ie., w = 0
or w= oo. The # numbers (11.3), representing the points of the w-plane
at which w* takes the same value z, correspond to the vertices of a regular
n-gon, inscribed in the circle [w| = V2], Conversely, the vertices of any
regular n-gon with center at the origin of coordinates represent possible
values of the function (11.2), for a suitable complex number z. Therefore, a
domain in the w-plane will be a domain of univalence for the function
z = w" if and only if it contains no more than one vertex of every regnlar
n-gon with center w = 0. Obviously, this condition is satisfed by the interior
of every angle of 2x/n radians with vertex at w = 0.

As already noted, the inverse of (] 1.2) is the multivalent function z = wh,
defined on the whole w-plane. Suppose we draw any » rays from the point
w = 0 such that the angles between adjacent rays all equal 2x/n. Then the
interiors ¥,,..., %, of the n angles of 2m/n radians formed by these rays are
all domains of univalence for the function z = w*, The image (under z = w")
of each of these domains %, is the same domain G in the z-plane, whose

boundary is some ray drawn from the point z = Q. In fact, if the boundary of
%, consists of the rays with slopes

@y + %’—t and @4 4 —-——~—2(k : l)n,

the boundary of G consists of the single ray L with slope ng,. In this way, we
obtain » single-valued branches

(Vo). ., (VZ), (11.4)

of the function Vv, z, all defined on the same domain G, where (\"G)k denotes

. 1, .
the branch which maps G onto €. Moreover, since w = (Vz), is a one-to-
1 1 o i
one continuous mapping of G onto %,, and since z = w* has a nonzero

" derivati - vz rivatives on
derivative nw"~! on %, the branches (V). all have nonzero deriv

G,i.e.,
1 1

Wit n(Vzyp-t

k=1,...,m

d 7
E(‘/Z)Jc = 7

; (cf. Rule 5, p. 109).
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FiGure 11.1

Now suppose we rotate our family of 1 rays through an'angle o about Fhle
origin, where 0 < « < 2m/n, thereby obtammg a new family of rays, Whl(?l
divides the w-plane into a new family of don_nams 2.,...,2,. Eacl.a 'domam
9, intersects two domains ¥, and ¥, 4, with Z, = &, by deﬁmﬂqn (s;e
‘Figure 11.1 illustrating the case n = 6, wl‘_lfare boundaries (?f the domamshjéc
are indicated by solid lines, and boundaries of the domains @,c by d'fls i
lines). The inverse image in the z-plane of each of the domains 2, is _t.c
same domain D, whose boundary is the single ray M drawn from the origin
.with inclination np -+ ne. As before, we can define n single-valued

branches ?

(V.. V2 (11.5)

..of the function w = ¥z, where now oV 2}, is the branch mapping D onto

* Note the vital distinction between the parentheses in (11.4) and the braces in (11.5).
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Dy. Again, each of the branches (11.5) is differentiable on D, and
d 1
E{ Z}E—W (fc—l,...,n).‘

Moreover, it is clear that {V’ z}, coincides with (v 7) on the set DN,
and with (V2),.,, on the set @, N ¥, ,,. Thus, when we go from one family
of domains of univalence to another such family, each new single-valued
branch is obtained by combining two of the old single-valued branches,
where on the part of 9, belonging to the common boundary I’ of %, and
D1, {VZ) is the appropriate limit of either (Vz), or (V2),,,. More
precisely, we have

{(Vah = (V2), if ze 2, N7,
{Vz}, = (VDhss If ze@, 0%y,
{(Vzh = lim (VO), = lim (VD),,, if ZeP, NT,
Lz Lz
where I' = ¢, N &, ,.
Remark. 1f the angle of rotation « is zero, then D = G and 9, = %,
(k=1,...,n),whileife. = 2r/n, D = Gagainbut 2, = %, (k= 1,.. R

where ¥,,, = .. As « increases continuously from 0 to 2r/n, the domain
P, overlaps the domain %,,,, more and more, until it finally coincides with
@y 41, and the ray M representing the boundary of D undergoes a counter-
clockwise rotation of 2r radians, where its initial and final positions coincide
with the ray L representing the boundary of G. At the same time, the branch

{V'z},, which originally coincides with (V/z),, shares more and more of its
domain of definition with the branch (V2 41, until it finally coincides with
(V2.1 In this sense, we can say that as « increases continuously from 0
to 2n/n, the branch (Vz), changes continuously into the branch (V2 1.

We can also keep track of the way one branch (V') changes into another

branch (V2),,, by making the point z describe a complete circle with center -

at the point z = 0. Suppose that at the point zp € G we choose a value of ¥z
belonging to the branch (Vz), and represented by the point

wy = V]zo] (cos% + isin&’)’
‘ n n

belonging to the domain %,. Then, as the point z moves continuously
around the circle [z| = {z,| in the counterclockwise direction, starting from
the point z,, the value of

’

w = V[zg] (cosg + isin ,%) (11.6)

217

- varies continuously with 6, and when z returns to its original value z,, (11.6)
. goes into the value

wy = Vg (cos b + 2n —; 2n + {sin 9 + 2n ;!; 271:),
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. obtained by rotating w, through the angle 2n/n about the point w = (.9
- Therefore w, belongs to the domain 111 adjacent to Z,, and w, is the value

“of the branch (V'z),,, at the point z,. Since the point z, & G is arbitrary, we
can say that one circuit around the origin z = 0 in the counterclockwise

-~ direction causes the branch (Vz), to change continuously into the branch
('\’VE);HI.* Moreover, it is easy to see that in this sense # circuits around the
-origin in the counterclockwise sense cause the branch (Vz), to undergo the

sequence of transformations
: ‘,yg)k e (%)mn (‘V;)kﬂ - (‘VE)HQ, e
(Vz w = (V2),, ..

~—

+ 3 (\y;)k— 17 (’\“/E)ks

vhich carry it continuously into itself after ““going through” all the other
~branches in succession. Since (Vv ), 18 arbitrary, # circuits around the origin
arry any branch into itself,

. Given a multiple-valued function w = J(2) with continuous single-valued
ranches defined on a domain G, we say that the point { & & is a branch point
of f(z) if there exists a neighborhood A (¥) such that one complete circuit
round an arbitrary closed Jordan curve v & A(Q) with £ e I{y), carries
very branch of /(z) into another branch of J(2). If a finite number of circuits
round v (in the same direction) carries every branch of f(z) into itself, and
f_‘-'n is the smallest such number, we say that € is a branch point of finite order,
pecifically, of order n — 1. In this case, the point ¢ is also called an algebraic
branch point of f(z), provided that /i (2) has a limit (finite or infinite) at €.
hus we have just shown that the point z = 0 is an algebraic branch point

f order # — 1 of the function w = Wz,

“Remark 1. It is clear that the point z = oo can also be regarded as an
lgebraic branch point of order n — 1 of the function w = V7, since every
ircuit around the point at infinity along a circle of arbitrarily large radius
ith center at the origin is simultaneously a circuit around the origin.
Therefore the multiple-valued function w = 1/Z has two branch points in
‘the z-plane, ie,z=0and z = o, both of order n — 1.

Remark 2. The single-valued branches described above were constructed

- 2 Of course, in making the circuit around the circle [z = |zo), we allow z to pass
irough the ray L, which is excluded from the domain G,

7% More precisely, every value of 'z on the branch (¥ z), changes continuously into
th_é corresponding value of ¥z on the branch (VZhr1e
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Remark 3. The conclusions of this section apply (with certain obvious
modifications) to the somewhat more general functions

for a domain like G or D, whose boundary is a rectilinear ray joining the
two branch points 0 and 0. More generally, let v be any Jordan curve in
the extended z-plane joining the points 0 and o, and this time let G be the
domain with boundary y. As the point z traces out the curve v from its
initial point 0 to its final point co, the » points corresponding to the # values
of w = ¥z trace out n Jordan curves I';,.. ., T', joining 0 and oo. These
curves have no points in common other than 0 and oo, and each set I', U | P
(where I',,, = T') represents a closed Jordan eurve in the extended w-plane.
Of the two domains with boundary I', U T, |, let ¥, be the domain whicly
does not contain the other curves I';,..., Iy, Piegooon, T, By con-
struction, when the w-plane is rotated through the angle 2n/n about the
origin, I, goes into Irsyand Ty, goes into I +2, and hence the domain @,
goes into the domain %, , (%,41 = %)). Since

w=vVz_a and w-:i/i:za (11.7)

which are the inverses of the functions

bw" — g
Wt —

Z=w"4+qg and z = s
respectively. The first of the functions (11.7) has branch points 4 and 0,
‘while the second has branch points g and b, Moreover, single-valued branches
of each of the functions (11.7) can be defined on any domain whose boundary
‘is a Jordan curve joining the appropriate branch points.

GG, =0 (k=1,...,n),

the rotation cannot carry any point of %, into another point of %,. Therefore
the domains 7, . . ., &, areall domains of univalence for the function w — z"
and we obtain » single-valued branches of the function w = V'z, all defined
on the domain G, by requiring that the kth branch take its values in the
domain &, (k = 1,.. - #). To specify a branch, it is sufficient to indicate
the value of vz at some point z, € @; if this value ig Wwo, there is a unique
domain ¥, containing w,, and a unique branch of ¥z taking the value w, at
the point z,.

Now let [¥Z], and [Vz], be two single-valued branches of the function
vz, which are defined on the domain G and take values wy and wyg,
respectively, at a point z, € G. Since

55. The Mapping w = V/P(z)

To gain a deeper insight into the concept of a branch point, we now study
the multiple-valued function

w=fz) = VP(2),

where P(z) is an arbitrary polynomial of degree N. Let P(z) have zeros
Sy, ., Gy, of orders a,, <» Om, Tespectively, where oy + - - . + &y = N. Then,
according to Sec. 35, P(z) can be written in the form

1, 1 ’ .o 0 ! ! 7 I
W:J = [’\/E e = V ,zf (COS M -+ 7 sin M), and 1ence
. n n f&) = VAG = ay= - (z ~ ) (11.8)
o= [Vz} = VT (cos Bo & 2% | gin Sa 2m”‘n:) 3
. W= L n 1 ’ onsider an arbitrary closed Jordan curve v which does not pass through
.any of the points a, . . ., a,, and suppose z traverses v once. At some point

i
)y

where 0y = argz, and m', m" are integers, it follows that wy equals wj

multiplied by

-Zp € v we choose definite values o, ..., o of the arguments of the complex
numbers z, — a, ..., Zo — @, thereby selecting a certain single-valued
ranch of the function f(z).

- As the point z goes around the curve y once, starting from z, and
eturning to z,, the argument 9. of the vector z — a, varies continuously;
if @, belongs to E(y) [the exterior of Y], ¢« returns to its original value @i,
Wwhile if a, belongs to I(y) (the interior of v), g, acquires an increment +2r
(see Figure 11.2).° The sign of the increment depends only on the direction

m’ — m' e 2mt —om
OSL"‘L}"}:"‘JSIH'(—“J’

= C
K 7] n

i.e., by a value of W1, But [V z), is obviously a single-valued continuous §
function on G, such that (n[VZ},)" = z, i.e., n[WZ], is one of the single-valued
branches of ¥z defined on G, in fact, the branch [Vz], containing the point |
V2], = [VZo], = wi. In other words, any single-valued branch of 'z .
defined on G can be obtained by multiplying any other single-valued branch
defined on G by an appropriate nth root of unity.

® These facts, which are easily verified in the simplest cases (for example, when vy
is a circle, an ellipse or a polygon), can be proved in complete generality. Sec e.g., P. 8.
Aleksandrov, op, cir., Chap. 2.
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in which y is fraversed, and if the appropriate angles increase, we say that
the direction is positive (this is always the counterclockwise direction).
Suppose, for definiteness, that the point z describes vy in the positive direction.
Then, if none of the points «,, . . ., a, lie inside v, all the angles o, return to
their original values, and as a result, the function f(z) also returns to its
original value (11.8). It follows that a point ¥ of the finite z-plane different
Jfrom the zeros ay,...,a, of the polynomial P(z) cannot be a branch
point of V. P(z). In fact, for any such point { we can find a neighborhood
A(C) containing none of the points a,, . . ., a,, and then a complete circuit
around any closed Jordan curve y © A7(C) with £ € I(y) does not change the
branch of f(z) which has been chosen.

Figure 11.2

Next let A"(a) be a neighborhood of the point a, which is small enough
not to contain any of the other points ay, ..., @._1, @kwts..., & Then a
complete circuit around any closed Jordan curve y < 47(a,) with a, € I(y)
changes ¢, by 2=, while all the other angles ¢, ..., Px_1, Prszs--., On
return to their original values. It follows that the right-hand side of (11.8) is
multiplied by the factor

ey,

+ isin - (11,9

2oy,

Cos

which is different from unity if and only if «, is not a multiple of #. Therefore '
every zero a, of the pelynomial P(z) whose order is not a multiple of nis a

branch point of VP(z). To determine the order of such a branch point,
suppose 8, is the preatest common divisor of e, and n (8, < n). Then,
setting a, = Sy, and 1 = B, (v, > 1), we see that (11.9) equals

2oty .. 2w
E 4 jgin 257k
Vie Vi

*

CO8
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Therefore, as a result of p circuits around y (in the same direction), f(z) is
multiplied by the factor

i

o 7

2 2o, p
cos b

+ i sin
Vi Vi

which is equal to unity if and only if p is a muitiple of v;.. Since v, is obviously

the smallest multiple of v, the branch point ay is of order v, — 1.

Finally, let A47(c0) be a neighborhood of the point at infinity which
contains none of the points a,, ..., a,, and let v be a closed Jordan curve
such that y < A"(00) and o e E(y). Since I(y) contains all the points
@y, . - ., ay, & complete circuit around v in the positive direction changes all
the angles ¢,,..., 9, by 2= Therefore the right-hand side of (11.8) is
multiplied by the factor

0s Zr(ey +’;' o+ o) + isin -

2n(a1+---+ocm)=6082_1r£~\f . . 2nN

c 4 isimn —;
#

“which is different from unity if and only if N is not a multiple of #. Therefore
-0 is a branch point of V' P(z) if and only if N is not a multiple of n. Suppose
"N is not divisible by #, so that co is a branch point of ¥ P(z). Let 5 be the

-greatest common divisor of N and # (3 < n), and let » = 8v. Then the branch
: point o0 is of order v — 1.

Remark. Let y be any closed Jordan curve Iying in the finite z-plane. As
-we have just seen, a circuit around y does not change the values of f(z) =

- V'P(z) if either of the following two conditions is met:

1. apel(y), a;e E(y) for j # k, and «, is a multiple of n;
2. aelly)fork=1,...,mand N = o, +:- -+ a,is a multiple of ».

“More generally, let a,, ..., a,, (g < m) be any set of zeros of P(z), such
~that oy, + -+ «, is a multiple of #. Then a circuit around any closed
Jordan curve v, such that I(y) contains gy, . . ., a, and E(y) contains all the

ther zeros, does not change the values of f@) = VP().

~ Now let G be a domain such that every closed Jordan curve y lying in G
“has the property that either /(y) contains no zeros of P(z) at all, or else 7(y)
“Contains a set of zeros the sum of whose orders is divisible by n. Then on
very such domain G we can define single-valued branches of the function
+f(2) = VP(z). In fact, let z, € G and let w, be one of the n values of the
function f(z) at z,. The single-valued branch f(z) which takes the value 1w,
t zo is constructed as follows: To find the value of this branch at any other
yoint z, € G we draw a Jordan curve L < G joining z, and z, (see Theorem
.12), and we move along z, to z,, making sure that the corresponding values
f /(z) vary continuously, starting from the initial value w, at z,. As a result,
we arrive at z; “accompanied” by one of the » values of f{z), which we
.denote by w;. It remains to show that w, is unique, i.e., that w, depends
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only on z,, wy and z,, and not on the particular Jordan curve joining z, to
z,. Suppose that by going from z, to z; along another Jordan curve I' € G
we arrive at z; accompanied by a value w) of f(z), where w} # w,. Without
loss of generality, we can assume that L and L' have only the points z, and
z; in common (see Problem 11.3). Then y = L U L’ is a closed Jordan curve
such that y < G and z, € v, but such that one circuit around y beginning and
ending at z, changes the value of f{(z) al z; from w, t6 w). But this is
impossible, since by hypothesis y either contains no zeros of P(z) or a set of
zeros the sum of whose orders is divisible by ». This contradiction establishes
the uniqueness of w,.
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Example 1. The function
w=J(z) = V(1 — 2% — k?z%)

O<k<l (}1.10)

9

Ficure 11.3

(a)

1\\\%\\% X

(b)

is a double-valued function with four branch points +1, + 1/k. Here N = 4
is a multiple of » = 2, and hence co is not a branch point. Since +1, +1/k
are all simple zeros of the expression under the radical, the numbers «, all
equal 1. Therefore a circuit arcund any closed Jordan curve v containing
only two branch points in its interior does not change the values of the
function. Thus, for example, we can define two single-valued branches of
S(2) on the domain G with boundary consisting of the two segments

[see Figure 11.3(a)], or on the domain G’ with boundary consisting of the
segment —1 € x € 1 and the infinite segment of the real axis joining the

points —1/k and 1/k through the point at infinity [see Figure 11.3(b)]. On -

the domain G, the two branches f; (z) and f;(z) of the function (11.10) can be
distinguished by the values they take at the origin, i.e.,

A =1, f0) = -1
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- Example 2. Consider the function

w = V4z® — goz — g,
where g, and g, are complex numbers satisfying the condition

gh —27g3 # 0,

(11.11)

which means that the discriminant of the cubic polynomial
4z% — goz — g4

is nonzero, so that the zeros e,, e, eg of (11.11) are all distinct.® In this case,
N = 3 is not divisible by n = 2, and hence the point at infinity is also a
branch point. As before, a circuit around any pair of branch points along
any closed Jordan curve does not change the value of the function. Therefor.e,
joining e, to e, and e; to oo by Jordan curves v, and vg, we obtain a domain
G with boundary consisting of y, and vz on which we can define single-valued
branches of the function (see Figure 11.4).

\\\\\Y

Figurg 11.4

Example 3. Consider the function

w=fz) =z + V& — |, (11.12)
“which is the inverse of the Joukowski function
1 1
== -1 11.13
z=3 (w + w) { )

he function f(z) is double-valued, and has the same branch points *1 as
‘the function Vz%Z — 1. To obtain a domain G on which single-valued
. branches of (11.12) can be defined, we join the points —1 and I by a finite
‘segment of the real axis. As we know from Sec. 51, this gives a domain
_which is mapped in a one-to-one fashion by the function {i1.12) onto
“‘each of the two domains 7(y) and E(y), where v is the unit circle. To

4 See e.g., (3. Birkhoff and 8. MacLane, op. cit,, p. 113,



