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Proof. We have

Co) = (B R OHRY R4V
SEIn(wR,R,b:O)“In(m‘o___j{)_In_R—b’:

where &" > 0 is the abscissa of the point B'. It follows that

R+& -
R=5 =% bV=Rayy

Suppose the tangent to I' at the point B’ intersects the real axis in the
point C’ [see Figure 10.9(b)]. Then C" is obviously the center of the
citcle containing the are I, and C'B" = p is the radius of this circle.2s
Moreover, 4’ is tangent to the arc «'B" at B’, and hence

(A'B) = A'B(A'B’ + 2p). o (1039)
Solving (10.39) for p, we obtain '

BB R - R — Dt + D _ " 2R
T T T T aRe D +1) T o<1,
3 R R

(e =2 T snn s e

Finally, examining the triangle AB'C’, we find that . e

- oy P T
I(3) = arc tan =%, = arc tan £ = arc tan_si s

A'p R
as asserted.

Remark. Ti follows from (10.38) that the angle of parallelism satisfies the
inequality L

™
0 < II(8) < 3

Moreover, as § — 0,

. 1
sinh § - Q, TSt H(a)“-i"‘ga

‘while as § — oo,

. ) 1
sinh § — + oo, m—:.o, TI(8) —0.
Formula (10.38) plays a basic rdle in Lobachevskian trigonometry.

*¢ Here, we also use C'p, A% and A'B’ to denote the lengths of the corresponding
Enclidean line segments. :
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For the further development of the material presented in this section, we
refer the reader to the extensive literature on non-Euclidean geometry, 27

5i. The Mapping w m% (z + é)

A mapping by a rational function of order higher than 1 was studied in
Sec. 37, in connection with the function
w=(z — g)* (n > 1.
However, this function is not meromorphic in the full sense of the word,

* since it is actually entire. We now study the rational function

. (10.40)

l 1 4+ 1
w-w?\(z)-z(z-i-z) ==
which comes up in the course of solving a variety of problems. In fact,
because of the use which the Russian scientist Joukowski (1847-1921) made’
of this function in aerodynamics, it is often referred to as the Jouwkowski
Junction. Obviously, w = A(z) is a rational function of order 2, which does

~not reduce to an entire function and which satisfies the condition

az) = m(-i-) , (10.41)

It follows from (10.41) that under the mapping w = A{z) every point of the
w-plane except w = +1 has two.(and only two) distinct inverse images z, and
2, satisfying the relation '
Zyzg = 1. (10.42)
Now let v be the unit circle |z} = 1, with interior J (¥) and exterior E(y).
Then, according to (10.42), z, e I () if and only if 2, e E(y). Moreover, the
two sets A[{y)] and ME()] are identical. Clearly, the function w = A(z)
is continuous (in the wide sense} on the closed domains I(y) and E(), and
one-to-one on [(y) and E(y). Therefore, according to Theorem 6.1, w = Mz)
maps f{y} and E(y) onto some domain & in the w-plane. Moreover,
according to Theorem 6.3, to determine the boundary of this domain, we
have to find the image I' = A(y) of the unit circle. But if

z =gt 0<t< 2,
then

W=udi=3et+ et =cost (01 2m),

7 Bee e.g., K. Bomuk and W, Smielew, Foundations of Geometry, revised edition
(translated by E. Marquit}, North-Holland Publishing Co., Amsterdam (1960); M. v,
Efimov, Hohere Geometrie, VEB Deutscher Yerlag der Wissenschaften, Berlin (1960);
H. E. Wolfe, Introduction to Non-Euclidean Geometry, EHolt, Rinehart and Winston,
Inc., New York. (1945). C
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i.e.,, I' is the segment —1 < u < 1, v = 0 of the real axis, traversed twice,
It follows that the domain % consists of all points of the w-plane except those
belonging to the segment T, i.e., ¥ = I's, where I'° is the complement of T.

To study the mapping (10.40) in more detail, we find the images of the

circles {z] = r and the rays Argz = « + 2%n (see Figure 10.10), confining
ourselves to the domain G = I(y). Setting

. z = ret <1< 2m),
where 0 < r < I, we find that

- SN o S AN 1 -l(l_,)-
w—u+w—-2(re +re )—E(F-i-})cosr—zz ; rlsin g,
or
11 : 11 .
W= f_l"(r_' - .v) €os {, v= -3 (F — ;) sin ¢, (10.43)
Y (2} v ()
TRl
2
,\o.'
\ 5 v/
o & o u
b4

Frcure 10,10

where 0 € ¢ € 2n, Eliminating ¢ from (10.43), we obtain

u? o2

GG EET

which is the equation of an ellipse with semiaxes @ = Tt 4+, b=

3(r~* — ) and foei at +1. It follows from (10.43) that as ¢ increases - -

continuously from 0 to 2w, i.e., as the point z describes the whole circle lz| =
once in the counterclockwise direction, the image point w describes the
whole ellipse once in the clockwise direction. By varying the radius of the
cirele [z| =.r from 0 to 1, we cause a to decrease from o to 1 and b to
decrease from co to 0; as a result, the ellipses (10.44) range over the whole
set of ellipses with foci +1. It follows, without recourse to the general
considerations of Chap. 6, that w = A(z) is a one-to-one mapping of the unit
disk ¢ = I(y) onto the domain & = I'¢.

(10.44) .
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Next we consider the images of the ray

z=1"  O<gt<1) (10.45)

with inclination «.?® Substituting (10.45) into (10.40), we obtain
. 1{1 .11 .
qu'i—ll)—i('z-i-f)COS&-—-ZE(?“—t)SIHOC
or

1
u=z ("tl' + a‘) cos a, v = _% (—;m — z‘) sin e ‘ O<:<1). (1046)

It follows that the images of two radii symmetric with respect to the real axis
(i.e., such that if one radius has inclination «, the other has inclination — o)
are themselves symmetric with respect to the real axis, while the images of
two radii symmetric with respect to the-imaginary axis (j.e., such that if one
radius has inclination e, the other has inclination = — &) are themselves
symmetric with respect to the imaginary axis. Thus it is sufficient to consider
the images of radii lying in the first quadrant 0 € « € /2,
For & = 0 we have

171
u=§(?+z), v=0 (0<1<1l),

which represents the infinite interval 1 < £ o0, The infinite interval
—® < u < —1is the image of the radius with inclination . For o = wf2

©_we have

w0 ol osien,

- which rebresents the negative imaginary axis — oo < <.0. The positive

imaginary axis 0 < v < + oo is the image of the radius with inclination
o= 2, Thus the image of the “horizontal® diameter of the unit disk
G:lz]-< 1'is the infinitc interval of the real axis going from ~1 to +1
through the point at infinity and excluding the points 4 1, while the image of

. the “vertical” diameter of G is the whole imaginary axis including the point

at infinity but-excluding the origin,
" Suppose hiow- that 0 '< & < w2, Then, eliminating the paraimeter ¢ from

(10.46), we, obtain

. Y s 1
. ' cos?  sinde
which is the lequation of a hyperbola, which we denote by H, with semiaxes

@4 =cosa, b =sine and foci at +1. Let Hy, Hs, Hy and H, denote the
intersections of H with the first, second, third and fourth quadrants,

%8 By the inclination of a ray (or directed line segment), we mean the angle measured
from the positive real axis to the ray. The slope of the ray equals the tangent of its

. inclination.
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respectively, excluding the two points (£a, ) of H belonging to the reat axis.
Moreover, let R, R,_., R .. and R_, denote the sets of points belonging
to the radii (10.45), with inclinations & 7~ o 7+ o, and —a, respectively,
Then it is easy to see that

= MR- Hy= MRerd)y Ha=MRuod Hi= MR,

In particular, the image of each of the diameters R, U R, and R,_, U R,
of G'Is a set consisting of two quarter-branches™ of the hyperbola H, joined
at inflaity and minus the points {4: 4, 0).
To summarize, the function
1 1
W= )\ = = -
Y @ 2 (z + z) '
is a one-to-one continuous mapping of both the interior and the exterior of the
unit circle v onto the complement of the segment ~1 € d< +1 of the real
axis. Under this mapping, the one-parameter family of cireles “|z] = r

(O < r < 1) is transformed into q one-parameter family of confocal ellipses, .

with semiaxes 3(r~! + +) and Joci at +1, and the one-parameter family of

pairs of diameters of v symmetric with respéct to the real axis, formed of the

radii S
Z = + ekl (Ogrsn,g

where 0 < o < wf2,% is transformed into o oné-parameter family of confacal

hyperbolas (minus their vertices), with semiaxes cos o, sin d-and foci at + 1.

Remark. Since the derivative

M) = % (1 - ;Ia)

is nonzero for z # 1, the mapping is conformal at all points of the domains
I(y) and E(y). It follows that the hyperbolas intersect the ellipses at the
same angles as the radii intersect the circles, i.e., at right angles. A similar
situation has already been encountered in Sec. 41. ‘ T

We now study the images under w = A(z) of circles passing through the -

points z = + 1. It follows from

2 .
W= :—21— (z + %)'='2 2-: ! (10.47)
that . -
1ZF 241 (z—1)2
ol s T =
whloft241 (24 1P
B 2z T2z
and hence
W] Z - 1\3 .
el (z""+“”1) : (10.48)

2 The cages o« == § and o, = 72 warrant special discussion (see above).,
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Moreover, it is easy to see that (10.48) implies (10.47). Therefore we gee
that the mapping w = A(z) is the result of making the following three
mappings in succession:

z—1 1+#

s W= 2% gy o= —
- W

(10.49)

The first of these mappings carries any circle y (not necessarily the unit
circle} passing through the points + 1 into a straight line passing through the
origin, the second mapping carries the straight line into a ray emanating
from the origin, and the third mapping carries. the ray into a circular arc §
joining the points + 1. From (10.49) we also see that if the angle between y

-and the positive real axis at the point z = 1 equals 0, then the angle between

its image & and the positive real axis at the pointw = [ equals 20 (see Figure
10.11). Moreover, it is clear that each of the two arcs of y with end points
+1 is separately mapped into the same aic §.

FrGcure 10.11

Remark I. The first of the mappings (10.49) transforms the exterior of
the circle v into a half-plane, the second mapping transforms the half-plane
into 2 domain whose boundary is a ray emanating from the origin, and the )
third transforms this domain into a domain whose boundary is the arc 5.
Since all three mappings are one-to-one and conformal on the appropriate
domains, the function w = Mz) is a one-to-one conformal mapping of the
exterior of the circle v (and also of its interior) onto a domain whose boundary
is the circular arc 8 Jjoining the points + 1. This generalizes the case where v
is the unit circle, and § is the line segment joining —1 to +1.

Remark 2. Let Il be the upper half-plane Im z > 0, let Iy, be the lower
half-plane Im z < 0, and let X be the unit disk |z] < 1. Then the function
w= Nz} maps Ky = Kn M, onto II, and K. = KNI, onto II,.
Moreover

My — Ky) = M&) = I,

since A(z) = A(1/z). The image of the semicircle Y separating I1,; — K, from
Ky s the segment T':~—1 g u g + 1, traversed just once. Therefore the
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image of the upper half-plane under w = Mz} is the whole plane except for
the infinite segment of the real axis which joins —1to +1 and passes through

the point at infinity, with &, going into IT; and I, — &, going into IT,,
as shown in Figure 10.12.

Frcure 10.12

52. Transcendental Meromorphic Functions.
Trigonometric Functions. -

In this section, we study the simplest franscendental meromorphic functions,
by which we mean meromorphic functions which are not rational functions,
For example, the meromorphic funetions

. sin z cosz
tanz = : Cotz = —2,

cos z sin z sin z
are all transcéndental, since, unlike rational functions, they have inﬁnitely
many poles (points where the functions become infinite). The functions
(10.50), as well as the entire functions cos z and sin z, belong to the class of

lrigonometric functions, i.e., tmeromorphic functions of the form?2®

PED) _ ag + @e® 4+ g g et
f(2)= ( )___ o 1 m

OFE™ = By + bye® ¥ T b (10-51)

Thus a trigonometric function is a rational function of the cofnp‘lex

exponential .- Obviously, we obtain the same class by considering functions
which can be represented in the form

0 In Sec, 40 we studied the two partiewlarly simple entive trigonometric functions
cos z and sin z.

ecz = ——I—, cscz = —1-—— (10.50y
cos z

i
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This last expression can be written ag

ay - z [a; + a_p) cos jz + i(a; — a_y) sin jz]
Flz) = 7=1

n

bo + > [(by + b_,) cos kz + iy, — b_,) sin kz]
k=1

ay + > (djcosjz + A sin jz)
i=1

by + Z (B cos kz + By, sin kz)
K=t

In the special case where the denominator is a constant, we can set b = I,
obtaining a trigonometric polynominl . :

Mm

Fz) = a, + z (45 cos jz + Aj sin jz).
F=1

If at least one of the numbers An and 4y, is nonzero, F(z) is said to be a
trigonometric polynomial of degree m.

Obviously, every trigonometric function is periodic with period 2x. There-
fore it is sufficient to study its behavior.in any strip Gix, € x < x, + 2n
-parallel to. the imaginary axis (note that G is neither open nor closed), since
the function behaves in exactly the same way jin all the strips

Gk “Xo + Zkfc "-‘s X < Xa + (2k + I)TE,

whcge k=0,41, +2,... and Gy = (. As z ranpes dver the strip G
(including the line x = x,), the variable zi = fzranges overa stripx, € y <

. xp .27 of the same width 2= parallel to the real axis, and hence ¢ = ¢*=.

- describes an angle of 2w radians with its vertex at the origin. The sides of
“this angle coalesce into a single ray Argt = x4 + 2kw, which is swept out
as z moves along the line Re z = xo. Therefore, as z ranges over the whole
strip Gyt = & ranges over the whole plane, taking every value except f = 0
-and 1 = ¢o {recall that ¢* does not approach a limit as z — co),
‘Retutning to the function (10.51), we write

P(#)

e . ’ o . . }.{(t)='@(_t)’

+

slo that
J(z) = R(e*).

Suppose the polynomials P(¢) and O(r) are of degrees »1 and n, respectively,
80 that the rational function R(?) is of order N = max {(rn, n). Then, as we
know from Sec. 43, for every complex number A, the equation '

R() = A (10.52)
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has N roots in the extended t-plane, and there are at most . + n values of 4

for which (10.52) can have multiple roots. However, in our case, the valugs

t=10and ¢ = o are excluded, since they are not possible values of the
function ¢ = ¢, Therefore we can only assert that (10.52) has &¥ roots (some
of which may be multiple) for every value of A4 with the possible exception of
the numbers R(0) and R(eo). Since the correspondence between z and ¢ is
one-tg-one on the strip G, and since the behavior of the function z = & jg
identical on all the strips @, where k = 0, 1, £2,... and Gy = G, we
have proved the following result: .

THEOREM 10.12, If
J(2) = R(e"®) # const

Is a trigonometric function, the equation

fz) = 4

has infinitely many roots Jor every complex number A with the possible

exception of R(0) and R(0), for which the equation may have no roots
at all,

Example 1. Let

@) = e,
50 that ' .

R(t) =,

where ¢ = o'®, _;I'hen R(0) = 0, R(w) = oo, and moreover the function R(z) -

does not vanish or become infinite unless £ — 0 or r = 0. Therefore =)
does not vanish or become infinite for any z.

Example 2. Let

' pi iz
f(Z) = SeC‘Z = 1—"_-':6—22—(29
so that .
2t
RO =75

Then R(0) = R(c0) = 0, and moreover the function R(t) -’does. rot vanish -

unless ¢ = 0 or ¢ = co. Therefore J(2) does not vanish. for any value of z.
Example 3. Let . . .
[z ]

f(Z) = fanz = ‘I—_'eg—’z"-ﬁa
S0 that :
L2 —1
R)=55 +1
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Since R(O) = and R{e) = —{, and since R(t) does not equal +/ unless
= ( or f = o0, the function S(2) does not equal + 7 for any z. '

Example 4. Let

cos z , g8z gtz
f(z)_sin2z“ P p—
so that
N
R(t) = ttT“_—-I

and R(0} = R(c0) = 0. However, R(t) vanishes at points other than 0 and
0, Le., for £ = +i. Therefore, in this case, f(z) takes al/ complex values at
infinitely many.points.

|

.
7

il

|

-..,I}".!
[

i

We now study the function

Fioure 10.13

18 —1
f(Z) = {an z = ?m
in more detail. In Figure 10.13 we plot the modidar surface of tan z, i.e., the

suiface & = Jtan 2§.3° The mapping w = tan z can be regarded as the result
of making the following four mappings in succession:

(t =€)

Nl §
i H 1

(10.53)

C=1iz, t=¢, Te=2

9 The unlabelled curves correspond to the equation arg (an z = const,



el LT Tl

206  ELEMENTARY MEROMORPHIC FUNCTIONS CHAP. 10
If G'is the strip

Xo < X< x4 h O<hgm (10.54)
parallel to the real axis, the mapping £ = iz = £ + in carries G into the strip
X <7< Xa -+ h (10.55)

parallel to the imaginary axis. Then the mapping ¢ = €' carries the strip

(10.55) into the interior of the angle of & radians with vertex at the origin
and sides

Argt = x4 + 2Uem, ATgt = x, + A + 2 (e I=10, £1, +2,...).

}’r v
() {w)

Ao Aok

.....[

ane

Fraure 10,14

Under the mapping + = #2, this angle is carried into the domain 4 which is -

the interior of the angle of 2k radians with sides
Argr = 2xy + 2km,  Argrt = 2x, - 24 + 2, (10.56)
and finally, the Mobius transformation

v

YEiTE I

(10.57)

carries the rays (10.56) into circular arcs joining the points w = i (v = 0) and

W= i (1 = o0), while carrying A itself into a circular lune with angles of
2 radians and vertices i i (see Figure 10.14). Since
dw

Fol, =% Am(-2) = - g + 2em,

the mapping (10.57) rotates the tangent to any curve emanating from the
point v = 0 through the angle ~4m. Therefore, at the point w = i, the
tangents to the circular arcs bounding the lune must have inclinations
2x — 4m ++ 2k and 2x, - 2h — 4m 4 2. These conditions completely
determine the domain % = f(G).
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Remark. Each of the mappings (10.53) is one-to-one and conformal on
the appropriate domains. It follows that w = tan z is a one-to-one conformal
mapping of the strip (10.54) onto a circular lune with angles 2% and vertices
+i. In particular, if & = =/2, the angles of the lune become =, and the lune
itself becomes a circle,

PROBLEMS
] 10.1 Givep a rational function
I C)
fle) = b6y (10.58)

"prove thqt the mapping w = Sz} is conformal at any simple zero of (=),
+ and glso at.z = oo if the equation f(z) = f{e) has no multiple roots.

.- 10.2., Prove that the rhaﬁping (10.58) actuaily fails to be conformal at each of
the points vq, .. . » - Which are the roots of the equation
: L  P@OE - P@OE =0
[see (10.8)], and also at the point yo = eo if the equation J(z) = f(0) has
- .multiple roots. In particular, prove that an angle with vertex at v, is enlarged
a number of times equal to the multiplicity of the root y; of the equation

f(z)=f(YI)?j=0=1)'--:r- '

10.3. Prove that the M&bius transformations of the special form

L1=2, L;x_ml: L3=1—'Z,
: z . (10.59)
z — z
La = =z Is z Lo = z—1

form a group.

Comment. This fact is summarized by saying that the transformations
(10.59) are a subgroup of ., the group of M&bius transformations (see
footnote 13, p. 184).

"10.4. Find the images of the following domains under the indicated Mé&bius

transformations:
a) The quadrant x > 0, » >-0if w = z_'fg_"";’
. . 2z — |
b) The half-disk |z| < 1,Imz > 0ifw = i
2 4 iz
) The sector 0 < argz < = if w = ~2:
& © Ezsgitw=goyp
. — ] . -1
d) Thestrip 0 < x < 1 ifw == 101‘11"w= zm 5



