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L.« is closed wunder multiplication, ie., if L, e, Lyed, then,

LiLloed, Ly, e 4.
2. Multiplication is associative. o
- There is an element U e . such that LU = UL = L. for, ghy Le.
4. For each L e, there is an element /- €7 'such that LL~! =
L7 = U e .

In algebraic language, these Jour properties are summarized by saying that
Is a group of transformations. ) . ‘

[#5]

45. The Circle-Preserving Property of Mabius Transf‘of-mationsu

We now prove that any Mobius transformation carries a straight line or.

a circle into another straight line or circle, We call this the circle-preserving

property, since a straight line can. be regarded as a limiting case of a circle'

(corresponding to infinite radius). The entire linear transformation Lz) =
«z -+ B (o # 0) is obviously circle-preserving, since the mapping w = L(z) is
Jjust a shift (if « = 1), or a shift combined with a rotation and a wniform
magnification (if « s 1), as discussed in Sec. 33, ‘

LemMa. The transformation

W= Al = (10.15)

N[

is circle-preserving.

Proof. The equation of any siraight line or circle in the z-plane can
be written in the form

A+ ) + 2Bx 4 2Cy + D = o, (10.16)

where we have a straight line if 4 — 0 and at least one of the numbers
B, C'is nopzero, and a circle if 4 # 0and B% 4 C? — 4D > 0. Since

x2+y2=22, 2x=z~%—z‘, 2y=-—i(2'-f):

where £ = x — iyis the complex conjugate of z = x + iy, we can rewrite
(10.16) as
Azz + Bz + Fz 4 D = 0, (1L17) -

where E = B + iC. It is easy to see that equation (10.17), where A
and D are real and £ is complex, is the equation of a straight line if and

only if 4 = 0, E # 0, and the equation of a circle if and only if 4 5 0,
EE — 4D > 0.

% Ses ¢.g., G. Birkhoff and S.. MacLane, ap. cit., Chap, 6, Sec. 2, or V. L Smirnov,
Linear Algebra and Gronp T, heory (translated by R, A, Silverman), MeGraw-Hill Bogk
Co., New York (1961}, Sec. 62. ' -
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We now find the image of the curve with equation (10.17) under the
transformation (10.15). Replacing z by Ifw in (10.17), we obtain

1 =1 1 ’
or
Dwiv + Ew 4 B 4+ 4 = 0, . (10.18)

Equation (10.18) has the same form as equation (10.17), with D, £ ang
A substituted for A, Eand D, respectively. It follows that (10,18) is the
equation of a straight line if D = 0, since then either 4 = 0 and & # 0
if (10.17) is the equation of a straight line, orelse 4 + Oand EF — 4D —
EE > 0 (so that F s 0 again) if (10.17) is the equation of a circle.
Moreover, (10.18) is the equation of a circle if D = 0, since then either
A#0and EE ~ 4D > 0 ir (10.17) is the equation of circle, or else
A =0and E # 0 (so that EE — AD = EE > 0 again) if (10.17) is the
equation of a straight line.

THEOREM 10.4. Every Mobius transformation

W= L(z) = _g%{_’:_‘_l; (ad — be £ O) (10.19)

Is circle-preserving.

Progf. If ¢ = (, (10.19) reduces to an entire linear transformation
and hence is circle-preserving, Ife 0, (10.19) can be written in the form

be — ad )
elez 4 )

a
W=
c+

Setting

Z; = LJ.(Z) = ¢z + d, Zy = A(zl) = El—,
1

a  be—ad
W= L_z(Zg) ? E 4 _""'“T""" Zg,
We can write L(z) as a produet
L =T,AL,

of three transformations which are all circle-preserving (use the lemma).
It follows that L jtself is cirele-preserving.

COROLLARY. Let § = —dfc be the pole of the Junction (10.19). Then
(10.19) transforms .every straight line or circle which passes through §
into a straight Hne, and every other straight line or cirele info a circle.

Proof. If the circle or straight line passes through 8, its image under
(10.19) contains the point at infinity, and hence must be a straight line,
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since it cannot be a circle (no circle contains ©0). Similarly, if the circle
or straight line does not pass through 8, its image does not contain the

" point at infinity, and hence must be a circle, since it cannot be & strai ght
line (every straight tine containg o0},

Remark. Let w = L(z) be any M&bius transformation, let v be a straight
line or circle in the z-plane, and let I' = L(y) be the image of y in the w-plane .

(T is itself a straight line or a circle). The two domains G, and G, with

boundary v are either two half-planes or the interior and exterior of a circle, -

Let L(G;) and L(Gs) be the images of these two domains under the mapping

W = I(z). We now show that L{G,) and L(G,) are the two domains whose *

common boundary is the curve IT'.7 -t

\ . (2} {w)

/'/ A
6.‘ /// ‘r‘!’z
W,

gi :c’/ ’
AN
//)(/’
g 5
\ &
i L ' r
z
. 6‘2

Froune 10.1

First suppose z; € Gy, 22 € Go, and let w, = L(z,), wy = L(z,). Then
wi T, wa g T, since z, ¢+, zy ¢, and hence 1w, and w, must belong to the

union of the two (disjoint) domains into which T divides the extended w-plane. -

If wy and w, both belong to one of these two domains, we can join wy to w,
by a line segment or circular arc A which does not intersect I' (see Fignre
10.1). The inverse image of A in the z-plane must be a line segment or cirenlar
arc 8, which joins z, to z, and does not intersect v. But the existence of §
contradicts the assumption that z; and z, belong to different domains G, and
Gy Therefore, if z, and z, beleng to different domains with boundary -,
their images w; and w, must belong to different domains with boundary T

We now denote the domains containing wy and wy by %, and %,
respectively. If z is an arbitrary point in G, then, since z and z, belong to
different domains @, and G,, their images w and w, belong to different

T OFf course, this result follows at once from Theorem 6.3, knowledge of which is not
presuppased here,

‘
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domaiits #, and %y But wye ¥,, and hence wed, ie, L@ e®,, if

‘.. 2€Gy. Similarly, L(z)e %, if z G,, and hence

Y13 LG), %> LGy (10.20)

' 'Conv'qrsely, let w be an arbiteary point in #,. Then w must be the image of

‘apointzin G, or G,. Butze G, Implies v e @,, contrary to hypothesis, and

"henceze Gy, i, g, < L(Gy). Similarly, we find that @y = L(Gy). Ttfollows
by comparison with (10.20) that

@1 = L(Gl): Gy = L(Gz)s

Le., the two domains with boundary I' are just the images of the two domains
G, and Gy, as asserted. Moreover, to determine which of the two domains
with boundary I' is actually the image of a given domain G, with boundary v,
it is sufficient to locate the image w, of any point z; € G,, for then the domain
&, containing w; is the image of G,.

46. Fixed Points of 2 M&bius Transformation.
Invariance of the Cross Ratio

By a fixed point of a transformation or mapping w = f{z), we mean a
point which is carried into itself by the transformation. Obviously, every
such-point is a solution of the equation

2 =fla).

Moreover, every point of the z-plane is trivially a fixed point of the unit
transformation U(z) = z,

THEOREM 10.5. Every Mobius transformation different from the unit
transformation has two fixed Dpoints, which in certain cases coalesce nto a
single fixed point,

Proof. First let ¢ = 0 (4 0), so that I(z) reduces fo the entire
linear transformation
a b
L(Z)-—D:Z-}-—(:’; (cx,.....a, [3___6_1)
Then, since L(w0) = co, one fixed point js the point at infinity, Ife s 1,
there exists another fixed point determined from the equation
' Z == az + B,

i.e., the point /(1 ~ o), butif o = L, B # 0, there is no finite fixed point.
Moreover, if « 5 1, B 5 0, the finite fixed point B/(1 — «) approaches
- 00 as « — L. Therefore, in the case of the transformation

’ L@ =z+p8 (80,
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the point at infinity can be regarded as two fixed 'points' which have.
coalesced, o . :
Now let ¢ s 0, s0 that

L(e) = 2 # <o,

A - ;
i.e., the point at infinity is not a fixed point.® Similarly, the pole § =
_ —djec of the transformation is not a fixed point, since *

L{8) = oo 5= 3,

Assuming that z # o0 and z % 5, we solve the cquation

Lot h
T ez +d
or
ez® — (@ —dyz - b =Q,
obtaining '

_a—d+ Vg — dy + dbe
- 2¢

If (@ — d)* + dbe 0, we obtain two different finite fixed points; if
(@ ~ d)y? + 4bc = 0, these two points coalesce to form a single finite fixed
point (¢ — d)/2¢.

- COROLLARY. The only Mébius transformarion with more than two
Jixed points is the unit transformation U(z) = z, for which all points are
Jixed points. ‘

THEOREM 10.6. A sufficient condition Jor two Mbbius transformations
L{z) and A(z) to be identical is that the equation

L(z) = Az)

hold for three distinct Points zy, 2, and z,. " In particular, there cannot exist
two distinet M&bius transformations taking three given values Wy, W, Wy
at three given distinct POINLs £y, 2y, 2,

Proof. 1t follows from
Lzd = Mz) = w,  (k

1,2,3)
that :
A~ w) =z, (e=1,2,3),
and hence

AM(z) = z,, (k=1,273).

 Therefore, in the class of Mdbius transformatjons, an entire finear transformation

is characterized by the fact that at least one of its fixed points is the point at infinity. .
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Therefore the transformation A=-%f, has three distinct fixed points,
which, according to the corollary, implies

AT =7,

where U is the unit transformation, Multiplying both sides of (10.21) by
A from the left, we obtain .

AA-) = AT,
which implies

L=A,
as asserted,

We now set about determining the (unique) Mébiug transformation
w = L(z} carrying the points zy, z,, z, into the points w;, “wy, Wy, Flirst we
consider the problem of finding the special M#bius transformation w = A=)
carrying three finite points =y, z, z, into the points 0, co, 1. Since the function

az 4 b
W= A2y =220
) cz - d
vanishes for z = z, and becomes infinite for z = zz if and only if z, is a zero
of the numerator and Zy is a zerg of the denominator, it follows that
W= Afz) = 22" %1
i ez — z
But w must equal 1 for z = Zy, e,
i 23 -_ 2'1
L= =25
€Iy — 2z,
which implies®
=1:2724
g ™ Zg

ailn

Therefore the Mobius transformation Canrying zy, z,, z, into 0, o0, 1 is

- _:2—-21_23«21_
w=A@ =225 P . (10.21)

Next we determine the more general Mébius transformation w — L(z)
satisfying
L(zl) = Wi, L(zz) = Wy, L(ZG) = Wy,

where w, wy, wy are three arbitrary (but distinet) finite points. As we have
just seen, the transformation

Z = Wy Hy —
M) = =1 o
Zo— Wy Wy —

(10.22)

® By x:y is meant the rasi of x to y, ie., the quantity x/y,
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carries the points wy, wy, wy into the paints 0, co, I. '-l‘herefore the trans-
formation A,L carries the points z,, z,, z, into the points 0, oo, 1, so tlv_mt .

S Y- Nk 3 10.23) 1

A]_L(Z) = A(,;) = ;‘:—Zg . Ta — Za ( _)

Multiplying both sides of the equation o
AL(z) = Afz) {10.24)

by A{* from the left, we obtain
' L{z) = ATA(2).

This solves the problem, since the functions AlZ) az}d‘ Ay(2), and i‘he_nce
Ar(z), are known [cf. (10.23) and (10.22)]. However, it 1§ more cohv?mgnt
to use (10.24) directly, after writing w = L(z). The result is '

AW = AGD)

or
W— W Wy —wy - Z -~z :Za - Zl’ {10‘25)
W — ws Wy — Wn Z e Zn Zg o Zg -

which expresses the Mobius transformation 1w = L(z) in implicit form.

Remark. Tn finding the Mbius transformation carrying the points z,, z,, _

Zy into the points wy, wy, wy, it was assumed that all six points are finite.
However, the case of infinite points is easily handled: For example; the
transformation carrying the points co, z,, Z into the points 0, co, 1 has the
form . .

W= A(z) = L -

Z — Zy Zg — Zy

which can be found by inspection or by writing (10.21) in the form

zZ Z.

——1 =2

Z. 1
W= -t :

I~ Zy Zg — Zyg

and then taking the limit as z, — co. Therefore (10.25) is replaced by

Wowy Wa—w 1 L
W Wy Wy —w, oz, — z, g — Za

where it is assumed that the points wy, 1wy, wy are ﬁpite. Similarly, tlhc
transformation carrying the points Z3, OO, Z, into the points 0, co, 1 has tle'
form

AZ) = (z - 71) 1 (23 — zy),
and hence we have

M;M=(Z_Zl):(za—zl),
w — o Wy ~ Wy

o e e i 4

© instead of (10,25).

. it follows from (10.25) that the relation between z and 1w =
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iﬁsteacj,of {10.25). Finally, the transformation carrying the points 1, Za, O

. into the points 0, o0, 1 has the form

A(—?—' = “l;
. 7z,
‘and hence we. have
l ' — Jg 7 2 — =
. W— W~y 2 z
W — Wy Wg — Wy T . Zq

In just the same way, we have to replace the left-hand side of (10.25) by
1

W~
: Wo— ) i (wy —~ -1
W=y — o, ¢ 1) (g ~ wy) or o e

depending on whether Wi = 00, Wy = oo por Wa = 0. As a result, we arrive
at the following mnemonic rule: If z, = o or Wy = (k,]=1,2, 3, the
differences involving =, or w, have to be replaced by 1.
verify this rule by taking the appropriate limits (as Z
equation (10.25).

The reader can easily
= 0T W, — c0) in

denoted by (g, b, ¢, d), is called the erogs ratio (or anharmonic ratio) of the
four numbers (or points) g, b, ¢ and d. If one of the four points g, b, e, dis
the point at infinity, we define the Cross ratio as the limit of the cross ratio
of four finite points, three of which coincide with the three given finite
points, as the fourth point approaches infinity. Thus, according to this
definition, we have

1]

c—b'd=p§
(ﬂ, °0>c:d)=‘(c'—a):(d—a)s

.d—a

(a,b,oo,d):l.m,
c—a
(a,b,c,oo)ac_b.

Now let w = L(z) be an arbitrary Méabius transformation, and let A, B,
€, D be the points into which L(z) maps four arbitrary (but distinct) points .
a, b, ¢, d. Since the points A, Band D are the images of the points a, 5 and 4,
L(z) is given by

W-—d D 4
v wW—B'D_p

_Z—~a d-g
T zb'd—3%
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where differences involving the point at infinity have'to be feplaced by L
Moreover, since the point C is the image of the point ¢, we have
C—4d D—A c—~a d—a '. .
C—B8B"D~B c—-b'd—4 o

(where again differences involving the point at infinity have to be replaced
. ’ !

by 1), or equivalent|y )

(4, B,C, D) = (a, b, ¢, d). _ ,
In other words, the cross ratio of any four distinct points is invariant under o
M&bius transformation. o

47. Mapping of a Circle onto a Circle®

Using the circle-preserving property of Mobius transformations and the
possibility of mapping any given triple of distinet points. z,, z,, zs into any

other given triple of distinct points wy, w,, w,, We obtain the following basic

result:

THEOREM 10.7. Let v and T be any two straight lines or circles, and let
15 Za, Zg and Wy, Wy, Wy be any two triples of distinct points belonging to Y
and I, respectively. Then there exists a Mbbius transformation w = L(z)
mapping v onto T' in such a way that

Lz =w. (k=1,273). : (10.26)

Progf. Construct the Mbiug transformation w = L(z) satisfying the
conditions (10.26), which according to Theorem 10.6 and the subsequent
construction, exists and is unigue. According to Theorem 10.4, w = L(z)
maps the straight line or cirele Y onto another straight line or cirele I'*,
But since v goes through the points zy, z; and zy, T™* must go through
the points wy, w, and w,. Moreover, since two different straight lines or
circles cannot be drawn through the same three points, I'* must coincide
with T, as asserted. :

Remark. Again consider two arbitrary straight lines or circles v and T
(which may coincide). Let G be one of the two domains with boundary s
and let # be one of the two domaing with boundary T, so that @ is either a
half-plane, the interior of a circle or the exterior of a circle, and the same is
true of ¥, We now show how to map G onto %. Choose an arbitrary
triple of distinet points 21, Z3, Z3 OR Y, and suppose an observer moving along
v in the direction from Z3 to zg through 'z, finds the domain G on his left,
say. Next choose a triple of distinct points w;, w,, w; on I' such that an
observer moving along I' iny the di_rection from s, to wy through w, fitids the
domain & on his Ieft, but let W1, Ws, Wy be otherwise arbitrary. Asin Theorem

1% As usual, 2 straight line is regarded as a limiting case of 4 circle (ef. p. 168).

-

)
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10,7, we form the Mébius transformation W = L(z) which satisfies the con-
ditions (10.26) and hence maps y onte I'. Then w = Lz
Y, ie, ¥ = L(G), In fact, if §is a segment of the normal to the curve
drawn from the point z, and pointing into the interior of G, so that an
qbserver at =y facing in the direction established on v finds $ on his left, then
since the mapping w = L(=) is conformal, an observer at ., facing in the,
direction established on I will also find the image A = L(S),_-;&fhich is a line
segment or circular arc, on his [eft (see Figure 10.2 and Remark 2, p. 156).
Therefore A = #, and hence # contains images of certain points belonging
to G (i.e., the points of the segment ). But, according to the remark on P-
170, L.(G) is one of the two domajns with boundary I = L(y), in fact just the
domain containing the image of any point in G. In other words, @ = L(G),

as asserted.
y
\'\‘
\

. o \N\

G

FrGure 10.2

Example. Find 4 conformal mapping of the upper half-plane Tm =z > 0
onto the interior of the unjt circle,

To solve this problem, we choose = ~Lizn=0z=1, 53y, so fhat
.the upper half-plane is on the Jeft of an observer moving along the ’real axis
m the direction from #1to zg through z,. Wwe also'choose three noints wy, w,
g on the unit circle, such that the interior of the circle is on the left o’f a;;
obser\fer moving along the circle in the direction from Wi t0 wy through s,
For Flmplicity, we choose w, = 1, wy = Ws = —[. Then the desired
Msbius transformation satisfies the conditions L) =w, k=123 and
can be represented in the form , T

Wl ~1—1 241 141

w—i'—-l—i—_T'_'T
or )
w_z—z‘
iz 1

where we have used (10.25).
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48. Symmetry Transformations

Let z; and z, be two points which are symmetric with respect to a given;
straight line v, ie., such that y is the perpendicular bisector of the line

segment joining z; and z,. By definition, the straight line passing through =z,
and z, is orthogonal to . Moreover, the center of any circle § passing through
zy and 2, lies on v, and hence $ is also orthogonal to v. It is easy to see that

the converse is true as well, i.e., if every straight line or ¢ircle passing through -

a pair of points z; and =z, is orthogonal to a given straight line ¥, then z; and

Zy are symmetric with respect to . Generalizing the concept of symmetry °

with respect to a straight line, we introduce the following definition: Two
points 2, and z, are symmeiric with respect to a given circle v if and only if
every straight line or circle passing through z, and z, is orthogonal to .

THEOREM 10.8. Let z) and z, be any two points symmetric with respect
1o a given straight line or circle v, and let w = L(2) be any Bdébius trans-
Jormation, Then the points wy = L(z,} and w, = L{z,) are symmetric
with respect to the straight line or circle T = L)t

Proof. We have to show that an arbitrary straight line or cirele A
passing through wy, and w, is orthogonal to I'. Let z = L~}(w) be the
inverse of the transformation w = L(z). Clearly, L~ is also a Mdbius
transformation, and :

-L—'l("vl) = Zi, L_l(w2) = Ea, L—l(l") = -

Moreover, § = L-1(A)isa straight line or circle passing through z, and
£. Since z; ‘and z, are symmetric with respect to vy, by hypothesis, it
follows that § is orthogonal to y. But then, since the mapping w = L(2)
is conformal (see Sec. 33), A = L(8) is orthogonal to I', and the proof is
complete,

COROLLARY, There is only one point z, symmetric 10 a given point z,
with respect to a given straight line or circle I

Proof. If v is a straight line, the statement is obvious. Thus let v
be a circle, and suppose that besides Zs, there is another point 25 + z,
symmetric to z; with respect to y. Choosing a M&bius transformation
w = L(z) mapping y onto a straight.line T", we find that wy = L(z,) and
wh = L(z5) are two distinct points symmetric with respect to I', which is
impossible,

Remark. Suppose w = Z(z) maps a straight line or circle v onto a circle
I with center wy, and let z, be the inverse image of wy. Then the point z,

1 It is in this sense that M&bius transformations are said to be symmetry-preserving.
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' ‘symmetric to z; with respect to ¥ must be mapped into the point at infinity.

"To see this, we note that Wg = 00 IS symmetric to w, = 0 with respect to the
circle I3 since any straight line or circle passing through 0 and @, ie., any
“straight line passing through the center of I', is orthogonal to T The

. unigueness of w;, follows from the corollary,

Let v be an arbitrary straight line or circle, A transformation of the
extended plane into itself, which carries each point z into the point z*
symmetric-to z with respect fo v is called a symmelry trangformation with
respect to v or a reflection in v. In the case where v is a circle, the trans-
formation is also called an inversioniny. We now derive analytical expressions
for symmetry transformations,

First let v be a straight line with an assigned direction, and consider
reflection in y. The straight line v is completely characterized by one of its
points @ and by the unit vector

€® = cos B -L 7sin B

pointing in- the direction of Y. Suppose we carry out the entire linear
transformation

7= L(W) = g 4 gy, (10.27)
which obviously maps the real axis onto v, since (10.27) corresponds to a
shift by the vector g (carrying the origin of coordinates to the point a),
followed by a rotation through thé angle 0 about the point a. Since the
inverse transformation w = L7™Y(z) maps y onto the real axis, it maps every
pair of points z and z* symmetric with respect to y into a pair of points w
and w* symmetric with respect to the real axis. But the points w and w* are
represented by two conjugate complex numbers, ie.,

W=1  wE=F (10.28)
Therefore z — g = e, ana
Z—a=e"N, 2% g ey o eg (10.29)
Eliminating 7 from (10.29), we obtain
- ) ¥ — a = Mz _ 7). (10.30)

According to (10.30), reflection in a straight line y going through 2 point 4 at
an angle 0 with the teal axis can be accomplished by first constructing the

vector z — g which is the reflection of the vector z — 4 in the rea axis, and
then rotating z — 4 through the angle 26 about the point a.
Next let v be a circle, and consider inversion in y. Let R (0 <R < o) be

the rading and 4 the center of y. We begin by finding a M&hius transformation
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which maps v onto the real axis. The simplest approach is to choose the
transformation .

I+ iw
z —I_.(w)—a:-i-RI vy
which maps the three points w, = ~1,wy =0, wy = 1 of the real axis into

the points z, = g — iR, Za=a -+ R, 2y =q+ iR of the circle y. The
inverse transformation w — L7Yz) maps v onto the real axis, and maps
every pair of points z and z* symmetric with respect to vy into a pair of points
wand w* symmetric with respect to the real axis. As before, the points w and
w* are represented by two conjugate complex numbers (10.28). Therefore

1+t
Z - g = T
I —ir
and
1 —if 1+ if '
—_— = ———y ko = — N
Fod=Remp =R o3y
Multiplying the two equations (10.31), we obtain
C-dE-a=r
or C ', .
2 L
e (10.32)
=7 = - . -

In pasticular, it follows from (10.32) that - .

.Arg(z*n'—a)u—Aré(z—a):"Arg(z-l—a) !
and R
lz — al|z* — 4] = Re,

Therefore the points z and z* Jje on the same ray.emanating from' the éenter

of v, and the product of their distances from the center of Y equals'the sqrare
of the radius of v. These two conditions, equivalent to formula (10.32),
determine the position of one of the points z, z* with respect to the other, -
and completely characterize the operation of inversion in the circle Y, with
equation |z — a| = R, ' ‘ '

Remark. We note that any symmetry transformation reduces to” con-
secutive application of a linear transformation (entire or fractional), followed
by reflection in the real axis, In fact, according to {10.30), reflection in a
straight line can be represented in the form

Z=d+e ™z - q), ™= F

while, according to (10.32), reflection in a circle can be represented in the

form
_Rz

ZJ=(3~{~

Z—q

'

sbeea
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Since any M&bius transformation is conformal and circle-preserving, and
since reflection in the real axis hag the same properties, except that while
preserving the magnitudes of angles it reverses the directions in which they
are measured, we see that the most general symmetry transformation is a
conformal mapping of the second kind (see p. 120) which is also cirele-
preserving,

49. Examples

We now give two examples illustrating the use of the symmetry-preserving
property of Méibius transformations.

Example 1. Find a conformal mapping of the upper half-plane My Tm z > 0
onto the disk K: |\w| < R, such thas a given point « & Iy iy mapped into the
cenrer of K12

Any such mapping

az + b
cz+d

provided it exists, vanishes for z — @, and hence « is the zero of L{z). But
the point & symmetric to « with Tespect to the real axis niust be mapped into
the point symmetric to the center w = 0 of K with Tespect to the boundary
of &, i.e., the circle C: |w| = R. Therefore & must be mapped into the point
at infinity (see the remark on p. 178), so that L(®) = w and & is the pole of
L{z). 1t follows that L(z) has the form

W= L{z) =

W=L(z) = H -y (10.33)

where A is a nonzero complex number,

We now show that {10.33) maps I, onto K, with z = « going into w = 0,
if we choose |A| = R. Since L{e) = 0 for any i, by construction, it js
sufficient to show that (10.33) maps the real axis onto the cirele C, Ifz=x

is an arbitrary real number, then x — « and x — & are complex conjugates,
and hence ’

X
X —

Wl = Jl = [ E=] oy 2

o
&

Therefore (10.33) maps the real axis into C. But since any three distinct

" points of the real axis are mapped into three distinct points of C, it follows

from Theorem 10.7 that the real axis is mapped onro .
In (10.33) the argument of x is left unspecified. The geometric reason for

" this indeterminacy is clear: Going from one value of X to another in (10.33),

' Inexpressions ike IOy: Imz> 0and K [w|< R, the colon means “with equation.”
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while keeping |A] = R fixed, is equivalent to changing the arguments of all
points w by the sams quantity, i.e., to rotating the disk X about its center
w = 0. Such a rotation transforms X into itself while leaving its center fixed,
and hence does not violate the conditions of the problem. Thus, if the
problem js to have a unigue solution, we must impose an extra condition
on L(z). For example, we might require either that

L. A given point x = x, of the real axis showld g0 into the point w = R of
the circle C, or that

2. The derivative L'(s) should be a positive real number. (Geometrically,
this means that the mapping does not change the slopes of tangents
to curves passing through the point &)

Imposing condition 1, we. find from (10.33) that

: Xo — &
= b = A —
R = L(xp) oy
50 that
)\ —_— .R xn - m:
Xp — o
and hence

Xg — €2 —a
Iz} = R0 % —- -
Xg — A2 -

Moreover, we still have

|1|-_—R!§9_“_E
Xg — o

= R,

as required. Imposing condition 2, with « = £ 4 i (n > 0), we have
A A

= ey

T == 2

so that 3/ is a positive real number, But, on the other hand, |A| must equal
R. Therefore A = iR, and :

Z -

L(z) = iRz —

Example 2. Find a conformal mapping of the disk K:|z| < R onto itself "

such that a given point a e K is mapped into the center of K.

Any such mapping
az + b
ez +d

provided it exists, vanishes for z — o, and hence « is the zero of L{z}. But

w=L{z) =

the point «* symmetric to « with respect to the boundary of X, i.e., the circle

C:lz| = R, must be mapped into a point symmetric to the center w = 0 of ¥
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with respect to C. Therefore o* must be mapped into the point at infinity,
so that L(«*) = co and o* js the pole of I{z), Tt follows that L(z) has the form

Z

w=L(z)=Az_a*

(10.34)

fef. (10.33)], where 2 is a nonzero complex number. According to {10.32),
the point «* symmetric to « with respect to C is

o = Eif:
. o
and hence (10.34) becomes
- Z—x z —
WLE) = et ay T - (10.35)

We now show that (10.35) maps X onto K, with z = « going into 1 = 0,
if we choose |u| = R2, Singe L{x) = 0 for any g, by construction, it is
sufficient to show that (10.35) maps the cirele C: |z = R onto itself. If

Z=Re® (06 < 2)
is an arbitrary point of C, then
_ _— re® —a oy Ret _
S Y E R
and hence
' - oy = |t RE® —a| fu| e
M= IR = | | = R

Therefore (10.35) maps Cinfo C, and hence onto C, by the same argument as
before. "This example is considered further in Problems 10.18-10,22.

50, Lg_ﬁﬁ;bevskian Geometry

. In the preceding section, we saw that every function of the form

WeL@) =pg—t (<R |g = &) (10.36)

" transforms the disk X: |z| < Rinto itself. In particular, the function

L z—qa
R
y’Rauaz

which we denote by I(z), has the same property, and obviously L(z) = L().
Moreover, it is easy to see that by letting « and g in (10.36) take all possible



