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ELEMENTARY MEROMORPHIC
" FUNCTIONS

43, Rational Functions

_PE) _ a+ az S
0= o " R

(am # 0, &, % 0) (10.1)

of two polynomials P(z) and Q(z), where it is assumed that the fraction
P(2)/ O(z) is in lowesr terms, i.e., that the equations P(z) = 0 and Q=) = 0
have no common roots, Let %12 .., & denote the distinct'g‘érp\s of the
polynomial P(z), and let «, be of order k, (s = 1,.. > P). Similagly, let
! The word meromorphic stems from the Greek pspos: = fraetion and HopE} = form,
and means “‘like a fraction.” . . :
160
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i ..., B, denote the distinct zeros of the polynomial Q(2), and let B, be of
order , (t = 1, ., -+ q). Then (10.1) can be written in the form

Sy =20 _ oz = ) (= gy

. N Y U
Obviously
. ! k1+~--+k,,=m, 11+---+lq=n,

and none of the numbers “Ls - -, 0y BQUAls any of the mambers f,, .., B,
since f(z) is assumed to be in lowest terms, The function J(2) vanishes at
each point o, (s = 1, ., -» ), called a zerp (or Tero-point) of order k, [of F(=0),
and becomes infinite at each point B, (r =1, .., 4); called a pole of ordey L.
The zero e, is said to be simple if J, = 1 and mudtiple if k, > 1; similarly,
the pole B, is said to be simple if L =1 and multiple if |, > 1, 1t follows
from our definition that the zeros of £(x) are poies of 1/f(z), while the poles
of f(z) are zeros of 1/f(z), and moreover that orders are Dreserved, ie., a
zero of f(z) of a given order becomes a pole of [f(z) of the same order, and
vice versa, .
To define f(z) when =z is the point at infinity, we use the relation

S(e0) = Jim /@),
obtaining . .
D Aw)=0 if m < n
2)  fleo) = ‘B’m if m=n; (10.2)

n

B A= if m>n

In the first case, we say that J(2) has a zero ar 0, and in the third case we
say-that J(z) has a pole at 0, To assign a definite order to 2 2ero or pole at
0, we make the preliminary transformation ¢ = Ifz (cf. Sec. 24), which
carries the point z = oo into the point { = 0, Then

1

4 + e
A - S T A e
f*(c) "“f(l/‘:) = 1 ™ b, + b, _ € +oe bot’ﬂ’

by ‘l‘blz"*‘""'“ bnz;;

al.é._]...._'..am

and analyzing the three cases (10.2), we obtain the following results:
L Ifm < n, then

: _ cn—m(am AL T e + GOC"‘)
S = e

Sipce this rational function has 2 zero of order n—matf =0, we
say that f(z) has a zero of order n — mat z =
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i
polynomials, given on p. 129). Moreover, only certain exceptional values of
w can have fewer than N distinet ;irivarse_images le.g., the point w = ¢ if
J(z) has multiple zZeros, or the point w = og if /(2) has multiple boles]. The
following result is the naturaj generalization of Theorem 9.1 - :

Proof. First suppdée A0, 45 20, and suppose that .4 has fewer
than & distinct inverse images. Then the equation .
_P@

/@) =G = 4
or equivalently . :

' B(z) ~ 40() |
=N L, 10.
Y <1 : (106
must tiave a muitiple root. Any finite multiple root of ( 10.6) is a multiple

root of the equation '

P(z) ~ 40(z) = 0, (10.7)
and conversely. Moreover, any multiple root of (10.7) satisfies the
equation "

, P'z) — 40'(z) = 0,
and hence alsg satisfies the equation

. PROE - PR =0, 08)
of degree no higher than m *+ n — 1. Equation (10.8) has'no more than
m + n — 1 distinet roots Yooty lSr€<m+n— 1). Since any
finite multiple zero of J(2) satisfies the equations

Pz) =0, Pi(z) = 0, ] .
and since any finite multiple pole of J(z) satisfies the equations
0(z) =0, Q') =0,

all the finite multiple roots of (10i6) satisfy (10.8), and are therefore
already included among the numbets y,, . . aYnevenifwelet 4 = 0 or
4 = eo. In other waords, the numbérs

f("fl):"'af(‘rr):f(oo) (1<r$m+?1—1)

are the only values of 4 for which the equation J(z) = 4 can have a

multiple root, where we finaily aillow for the possibility that zZ=cwisa

multiple root. Since at most -+ n of these nnmbers are distinct, the
" theorem is proved.3

T N=0o0r N = 1, the theorem is meaningless,

SEC. 44 ELEMENTARY MEROMORPHIC FUNCTIONS {45

_Remarlc. The mapping w = f{z) is conformal at all but a finite number of
points, since the condition that £ should not equal ™, any of the numbers
Y12+ -3 Yr OF any of the zeros of 0(z) is certainly sufficient to guarantee
that the derivative

“5) = LB Q(z) — L(z)Q'(z)
S = 0GP

is finite and nonzero.?

44. The Group Property of Mébijus Transformations

It f'olI_ows from Theorems 10,1 and 10.2 that the rational function of
order 1, i.fa., the fractional lineqy transformation or MEbius transformation

_'__(112';-151 ___agz+b3
Ll(“') = ez & d}_, LE(:.) = m (109)

are regarded as identical if and only if L1(z) = Laz) for all 2.

THEOREM 10.3. A4 necessary and sufficient condition Jor the two Mobiug
transformations (10.9) to be identical is thay

oy = lal, bz = lbl, Cq = lCl, dg = lf[l Ot % O). ) (10.10)

Proof. The suﬁiciency of ihe condition is obvious. To prove the
necessity, suppose Li(z) = Ly(2). Then, in particular,

Li@) & Lo(0), Ly(D) = Lo(l), Ly(o0) = L(c0),
which means that

bl_bz__ a + b, ay + by a, az
dl“ 2—p, cj_+d1 —82 -I- dﬂ’ Z—:H—g. (10-11)

. ¥ However, the conditien is not necessary. (For further details, see Problems 10.1
and 10.2))

"% Here we allow p or g to take the improper value o,
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Substituting

by = pdy, by = pdy, @y = gcy, dg = 9c2
into the second of the equations (10.11), we obtain

gcy + pdy - 9cp + pd, '
Cl “l" dl cg + d2

or
) (e1dy — cadh)(g —-p = 0-_
But q # p, since otherwise
a; b1 . -
—= == L&, @yd; — bycy = O,
e dy e W
contrary to hypothesis, and therefore

[

dy ~ dy
Together with (10.11), this implies (10.10), as required. ’
Remark. A Mobius transformation i not characterized by the value of

its determinant, since the determinant is multip’liéd' by A% when the coefficients

change as described by (10.10). It-can only be asserted that the determinant
remains nonzero under any substitution (10.10).

The transformation
U@ =z, T

which obviously belongs to the set A, is called the unit transformation (or

the idenzity transformation). By the inverse of a given transfom_xatiop

az + b X

= — 10.12

i cz+d ( )

we mean the transformation which assigns to each w its inverse image z
under the transformation (10. 12). Thus the transformation

dw — &
—cw 4 a

(whose coefficients are unique only to within a. multiplicative constant, as
im Theorem 10.3) is the inverse of the transformation (10.12), We: denote
the inverse of the transformation 7. by I.~1, :

Given two arbitrary Mobius transformations

o __ag_Z"‘bl __aZZ"l"bg’
O -

we define the product of L, and L, as the result of first carrying out one
transformation and then carrying out the other. There a;&-tﬂo possible

SEC. 44 ' ELEMENTARY MEROMORPHIC FUNCTIONS 167

products corresponding to the two orders in which the transformations can
be carried out. One produict, written L, L,(2), equals

LILQ(Z)‘ - ﬂl'[(aﬁz - bz)/(czz + ‘712)] + &y
eil{asz + bo)f(coz + dy)] + o
= @(aaz + by) & b,z + dy) (10.13)
- 0xl@az + by) + dy(cgz + o) ’
= (@map + bicy)z + (enby + bydy)
(182 + dico)z + (crbe + didy)

and the other, wriften Lol (2), is obtained from (10.13) by permuting the
indices 1 and 2. Moreover, since
(@1a3 -+ bicg)(c,by + didz) ~ (abg + bids)(cra: + dyey)

= (ad, — blcl‘)(aﬂdz —~ bacp) 5£ 0,

each of the transformations Ly La(z) and L:L,(z) belongs to the set .. In
general, L, L,(z) # LyL (=), but obviously
: LL Yz) = L7L(z) = U(z),
and _
LU = UL() = L)
for any L(z) e .#7.

Example. If

z z+1
L) =37 L=t

then

z+1
Ly La(z) = —ay Loli(z) = —2z — 1.

Multiplication of transformations, as just defined, is an associarive

-operation, i.e.,

(LrLo)Lo(z) == Ly(LoL)(2). (10.14}

To see this, we merely write z; = L,(z), and then both sides of (10. 14} reduce
at once to L;Lq(z,). This associative property generalizes immediately to
the product of an arbitrary number of transformations, and makes jt
unnecessary to use parentheses when writing products. For example, we

have

LJ.A[L:!(L::LA;)](-?) = L;I.LQ(LQL‘J(Z) = Ly(LaLa)Lyfz) = = LyLaLoLy(z).

Thus we have shown that'the set ¥ of M&bius transformations has the
following properties 5 '

® Henceforth, for simplicity, we shall often omit the argument z, writing L, instcad of
Ly(z), U instead of U(z), etc,
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L ¥ is closed under mulr{'pliqaﬁon, ie, if Lied, I, €.\ then oL We now find the image of the.curve with equation {10.17) under the
LiL, e, Laly € 4, o o . transformation (10.15). Replacing z by I/w in (10.17), we obtain
2. Multiplication is associative,
3. There is an element U e such that LU = U7, = 7, for any I.e.#, A—-l-— + Ei N El +D=0
" _ -1 — = =
4. For each L e.#, there is an element L~ e.# such that LI.-1 — wiv w i
L7 = [, ' . or
In algebraic language, these four Properties are summarized by Saying thar 48 : Dwiw + Bw - B 4 4 = 0. (10.18)
Is a group of transformationy. : _ : Equation (10.18) has the same form as equation (10.17), with D, F and

A substituted for A, Eand D, respectively. Tt follows that (10.18) is the
‘ £quation of a4 straight line if » — 0, since then either 4 — Oand £ 0
45, The Circle-Preserving Property of M&bius Transformations IF(10.17) is the equation of a straight line, orelse f  Qand £5 — 4D =

: . ‘ EE > 0 (so that E # 0 again) if (10.17) is the equation of a circle.
We now prove that any Mébius transformation carries a straight line.or Moreover, (10.18) is the equation of 5 circle if D 5 0, since then eithey
a cirgle into another straight line or circle. We call‘this the circle-preserving 4 3 0and EE i i

DProperty, since 4 straight line can be regarded as a liniiting case of a circle A =0and £ (so that EE
{corresponding to infinité radiig). The. entire linear transformation L(z) =
“z + B (« 5% 0) is obviously circle-preserving, since the mapping w = L(z) is o .
Just a shift (if « = 1), or a shift combined with a rotation and a uniform Tarorem 10.4. Every MEbius transformation
magnification (if « 5 1), as discussed in Sec, 33,

W=1(z) =

az + b
LemMa. The transformation ' . . oz

T (ad — be = gy (10.19)

. 1 s circle-preserving,
W= A(z) = = (10.15) ‘

is circle-preserving.

Proof. The equation of any straight line or circle in the z—i:ulane can

. : : 2  be~ad
be written in the form . W= P ez T
AGR + y%) + 2Bx + 20y + D =0, (10.16) : Setting
T : 1
where we have a straight line if 4 < 0 and at least one of the numbers . : r L o R=sh@) =ad oz, = Afzy) = =
B, C is nonzero, and a circle if 4 s 0 and B2 + C* — 4D > 0. Since T X ¢ e ad 1
X2k 3R =2z, 2 =z 47 2y= —i{z — 3, ‘ i W= Ly(zo) Tt Tz,

where 2 = x — jyis the complex conjugate of z = x -+ Iy, We can rewrite :  we can write L(z) as g product
(10.16) as ' . ' " N Le AL

' dzz+ Fz + Ez + D =, (10.17) i L RN LoALy
where E = B + iC. 1t is easy to see that equation (10.17), where 4 : - . ofthree transforn_-;atmnls V{hxch are all f:lrcle-preservmg (use the lemma).

X RN i . .. " + It follows that 1, itself is Circle-preserving,
and D are real and & is complex, is the equation of 2 straight line if and ,

only if 4 = 0, £ % 0, and the equation of a circle if and only if 4 & 0,
EE — AD > 0. . ,

. . , and every other straight line or circle into a cirele.
? See e.g,, G. Birkhoff and S, MacLane, op. it Chap, 6, Sec. 2, or V, I. Smirnay,

Linear Algebra and Group Theory (translated by R. A, Silverman), McGraw-Hill Book Proof. If the circl

€ OT straight line basses through 8, its image under
Co., New York (1961), Sec. 62.

(10.19) contains the point at infinity, and hence must be a strajght line,
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since it cannot be a circle (no circle contains o). Similarly, if the .circle
or straight line does not pass through 8, its image does not contam‘the
point at infinity, and hence must be a circle, sinee it cannot be a straight
line (every straight line contains oo},

Remark. Let w = L(z) be any Mobius transformation, let v be a straight
line or circle in the z-plane, and let T' = L{x) be the image of v in the w-plane
(T is itself a straight line or a circle). The two domains G, and G, with
boundary y are either two half-planes or the interior and exterior of a circle.
Let L(G,) and L(Gy) be the images of these two domains under the mapping
w = L(z). We now show that L(G,) and L(G,) are the two domains whose
common boundary is the curve I'.7 .

{z)

G2

Fraurs 10.1

First suppose z; € Gy, z,€ Gy, and let Wy = L{zg), wp = L(zz). Then
Wi # T, wo g D, since z; ¢y, 2z, ¢ Y. and hence w; and w, must belSng to _the
union of the two {disjoint) domains into which I' divides the e;’cteride:d w-plane.
If wy and w; both belong to one of these two domains, we can join wy-to w,
by a line segment or circular arc A which does not intersect I (see Figure
10.1). Theinverse image of A in the z-plane must be a line segment br circular
arc 8, which joins z; to z; and does not intersect y, But the existence of §
contradicts the assumption that z, and 2, belong to different ‘dornai;ns G, dnd
Gy. Therefore, if z; and z, belong to different domains with boundary v,
their images w;, and w, must belong to different domains with botindary T'.

We now denote the domains containing w; and w, by %, and b,
respectively. If z is an arbitrary point in Gy, then, since z and z, belong to
different domains @, and G, their images w and w; belong to different

7 Of course, this result follows at once from Theorem 6.3, knowledge of which is not
presupposed here,

SEC, 46 ELEMENTARY MEROMORPHIC FUNCTIONS | 7

" domaing %, and %,. But wa& %, and hence we ¥, ie., Lizye9,, if

2 & G. Similarly, L(z) e %, if z € Gy, and hence
@12 L(GY), b, o L(Gy). (10.20)

Conversely, let s be an arbitrary point in %,. Then w must be the image of
apointzin G, or Gy. Butze Gz implies w e %,, contrary to hypothesis, and
henceze Gy, i.e., ¥ < L(G). Similarly, we find that ¥y < L{G,): It follows
by comparison with (10.20) that

¥y = L(G1)= Gy = L(Gz),
ie., the two domains with boundary I are just the images of the two domains
G, and G,, as asserted. Moreaver, to determine which of the two domains
with boundary I' is actually the image of a given domain @, with boundary -,

it is sufficient to locate the image w, of any peint z; € Gy, for then the domain
#; containing i, is the image of G,.

46, Fixed Points of 2 Mébius Trapsformation.
Invariance of the Cross Ratio

By a fixed point of 2 transformation or mapping w = f{z), we mean a
point which is carried into itself by the transformation. Obviously, every
stich point is a solution of the equation

z = f(z).

Moreover, every point of the z-plane is trivially a fixed point of the unit
transformation U(z) = 2.

THEOREM 10,5, Every Mobius transformation different from the unit
transformation has two fixed points, which in certain cases coalesce into a
single fixed point,

Proof. First let ¢ = 0 (d # 0), so that L(z) reduces to the entire
linear transformation

d d

Then, since L(co) = co, one fixed point is the point at infinity. If o 5% I,
there exists another fixed point determined from the equation

L(z) =az -+ p (oc - &, = .b..)

Z=oaz 4 B,

i.e., the point 8/(1 — o), butife = 1,8 5 0, there is no finite fixed point,
Moreover, if « 5% 1, B # 0, the finite fixed point B/(1 — «) approaches
% as «~»> 1. Therefore, in the case of the transformation

Le)=z+8 (o,
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carries the points w,, Wa, wy into the points 0, co, 1. T_herefore the trans-
formation AjL carries the points z,, z,, z, into the points 0, eo, 1, so that

MLE) = AR =25, 5B 50 (10.23)

-

£ Iy Zg — Zg

Multiplying both sides of the equation
A L(z) = A() (10.24)
by AT from the left, we obtain
L(z) = A7*A().
This solves the problem, since the functions A(z) and Ay(z), and hence

AT Hz), are known [cf, {10.23) and (10.22)]. However, it is more convenicnt
to use (10.24) directly, after writing w = L(z). The result is

. A{w) = A(D)
or"

~ .
W - w Wg — it - Z Zg =~ Z
——i LT _ 275 Iy -y (10.25)
Wo— Wa Wy — g I Ep Zg— %y

which expresses the M&bius transformation w = L(z} in implicit form.

Remark. In finding the Mébius transformation carrying the points z,, z,,
zy into the points Wi, Wa, Wy, it was assumed that all six points are finite,
However, the case of infinite points is easily handled. For example, the
transformation carrying the points oo, z,, z, into the points 0, oo, 1 has the
form ;

1 !

W=A(z)zz_:—z;:23-—2'2

and then taking the limit as z, — 2o, Therefore (10.25) is replaced by .

W= W1 Wy — Hy » 1 1

.

. B} 2
W Wq Wy — W, Z1 — Zg 7y — Zp

where it is assumed that the points wy, wg, wy are finite. Sirdilarly, the
transformation carrying the poiuts z, oo, z4 into the points 0, oo, I has the
form =

[

A(z) = (r — z) : (25 — Z1),
and hence we have .

W_—'WI_WQ"W]_“_" . .
w-wz'wa——w2~("‘ 21) : (5 — z),
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?nstead of (.10'25)' Finally, the transformatidn carrying the points I, Iy, 0
tnto the points 0, co, 1 has the form ! o

g -~
.A(..'.') = 1:
I —zy
and hence we haye
]
p pa— J, ! — 3, B o—_
! Hl:lla Wy § =%
L L T L Iy

instead of (10.25).
In just the same way, we have to replace the left-hand side of (10.25) by
S

. - Woe—
Ty e W o— e . fo — 1
W — Wy Wy — “;2’ ( ”1) . (“'3 “”1) or w ”-'2’

de:pending on whether wy = oo, jp, = COorwy = oo, Asa result, we arrive
a‘t_the‘ follo.wmg mnemonic rule: If z, = og or W= (k=172 3), the
daﬁ:cranch Involving %k OF 4, have to be replaced by 1., The reader can easily
VEI‘lf}" this rule by taking the appropriate limits (as z. — e or Wy —- 00) in
equation (10.25). ' .

points, as the fourth point dpproaches infinity. Thus, according to this

1 1]
)b: 3d T e |,
(20,6, 0d) = g Ao

(!2', <, C‘,d)=(c-—a):(di— L'Z_),
(a,b,oo,d)mz:j:g,

¢ —aq

c— B

(ﬂ, b, c, COJ =

Now let w = J?(z)_ ‘be an arbitrary Mﬁbius- transformation, and let 4, B,
C, D be tht? points mto which £(z) maps four arbitrary (but distinct) pojnts
a, b, ¢, d. Since the points 4, Band D are the images of the points @, b and 4,

it follows from (10.25) that the relation between z and w = L(z) is given by

EHl
—a di- g

W~Ad D—-d ¢ .
me'D—B_;_-_b'd;h—b’
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where differences irivoiving the point at infinity have to be replaced by 1.
Moreover, since the point C is the image of the point ¢, we have

C~A_D—.A_ﬂc—a_d—a
C—B'D-B =3 'd=%

{(where again differences involving 'the point at infinity have to be replaced
by 1}, or equivalentiy

(4,8,C, 0 = {a, b, c,d).
In other words, fhe eross ratio of any four distinet points is invariant under 4
Mbbius transformation. '

47. Mapping of a Circlé onto 2 Circlal®

Using the circle-preserving property. of Mébius transformations and the
possibility of mapping any given tripje of distinct points z;, zy, z, into any
other. given triple of distinet Points wy, wy, w,, we obtain the following basic

result: :

THEOREM 10,7, Ler T and I be:any nvo straight lines or c}‘rcles, and let
215 22, Zg and wy, wg, 'wy be any two iriples of distinet points belohging to Y

and Iy respectively: Then there exists a MBbius transformation w = L{z)
mapping v onto T in such q way that

e =w, (k=12 3). (10.26)

Proof. Construct the Mébius transformation w = L(z) satisfying the
conditions (10.26), which according to Theorem 10.6 and the subsequent
construction, exists and is unique. ‘According to Theorem 104, w = L(z)
maps the straight line or circle ¥ onto another straight line or circle I'*,
But since y goes through the points Zy, 23 and z;, T* must go through
the points wy, w, and Wa. Moreoyer, since two different straight lines or

circles cannot be drawn through the same three points, I'* must coincide
with T, as asserted, .

Remarl. Again consider two arbitrary straight lines or circles vand I
(which may coincide). Let G be one of the two domains with boundary v,
and let ¢ be one of the two domains with boundary I', so that G is either a
half-plane, the interior of 2 circle or-the exterior of a circle, and the same is

true of ¥, We now show how to map G onto #. Choose an arbitrary’

triple of distinct points z;, z,, z, on Y. and suppose an observer moving along
v in the direction from Z) 10 zy through z, finds the domain G on his left,
say. Next choose a triple of distinct points Wi, W, Wy on I' such that an
observer moving along T" in the-direction from Wy 10 w, through Wa finds the
domain ¢ on his left, but Jet Wy, W, w4 be otherwise arbitrary. Asin Theorem

* As usual, a straight line js regarded as a limiting case of a circle {cf. p. 168).

[ SN
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JQ,?, we form the Mabiug transformation s — L{z) which satisfies the cop-
dlthllS (10.26) and hence maps y onto I'. Then w — L(=) also maps G onto
Y, ie, ¥ = L(G).,_ In fact, if 5 js a Segment of the norma o the curve -
drawn from the point z, and pointing into the interior of G, s that an
qbserver. at z, facing in the direction established on v finds § on I*’n's left, then
since :rhe mapping ip = L{z) is conformal, an observer at iy facing }n tle
direction established on I' will also find the.image A = L(3), which js 3 line
SCEMENt or circular are, an hijg left {see Figure 10.2 and Remark 2 p. 156)
Ther_efore A% and hence ¥ contains images of certain points b,eh;nving.
to & (ie., the Points of the segment §). Byt, according to the remark 0:

170, L(G) is one of the two domains with boundary I = L), in fact jyst tl?e:

domain containing the image of any point in G, Ip other words, @ — L{G)
as asserted. ' ’

SR \\\\ :
\\R\\&\\ e \\‘\%*\&\
z~\\\§§\ \

Fisurz 10.2

Example. Fing 4 conformal mapping of the upper half-plane Tm z » 0
onto the interior of the unit cirele, i

To sclve this problem, we choose = =1z, =, s = 1, say, 50 that
=ic upper half-plane is on the left of an observer maving a[ong’thc ’real axis
An the direction from &y to z4 through Z3. We also choose three points 1, 4y,
Jn-g on the unit circle, such that the interior of the circle is on the lef :J,f a;
iobserver moving along the circle in irecti g
{For simplicity, we cﬁoose W ='Ith?vdi—r—cc;m:: fr—om ll[’1 ';‘c})) " thFOUgh.“’e-
!Mﬁbius transformation satisfies the’ ditions £(og) = o the deSlf&F{
i ] _ conditions Liz) = Wi k= 1,23 and
tan be represented jn the form T

it "’_l._'l'“l_z'f'l.l'{-l
. : W= T T
OP!"“"' 1 i z ]
].l}:l—z-__.._i.,
1z —~ i

where we have used {10.25),
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48. Symmetry Transformations

Let z; and z, be two points which are symmetric with respect to a given
straight line v, i.e., such that ¥ is the perpendicular bisector: of the line
segment joining z, and z,. By definition, the straight line passing through =z,
and z, is orthogonal to . Moreover, the center of any circle § passing through
z; and z, lies on v, and hence § is also orthogonal to v: Ttis easy to see that
the converse is true ag well, i.e., if every straight line or circle passing through
a pair of points z, and =z, is orthogonal to a given straight line v, then =, and
Zz are symmetric with respect to ¥. Generalizing the concept of symmetry
with respect to a straight line, we introduce the ‘foliowing definition: Two
Points 3y and z, are symmetric with respect to a given circle ~ if and only if
every straight line or circle passing through z, and z, is orthogonal'to'y.

THEOREM 10.8. Let z; and =, be any two points symmetric with respect
lo a given straight line or circle 1, and let w = L(z) be any Mbius trans-
Jormation. Then the points wy = L(z)) and Wo = L{z,} are Symmetrie
with respect to the straight line or cirele I' = Liy)2y

Proof. We have to show that an arbitrary straight line orcircle A
passing through w; and W, is orthogonal to T, Let z = L~Yw) be the
inverse of the transformation w L(z). Clearly, L-* is also a Mébius
transformation, and .

L7y} = z, L Ywy) = Zg L7YD) = Y- .

Moreover, 8 = L-YA)is a straight line or circle passing throughi z; and
Z5. Since z; and z. are symmetric with respect to v, by hypothesis, it
follows that § is orthogonal to v. But then, since the mapping w = L{z)
is conformal (see Sec. 33), A = L(3) is orthogonal to I, and the proof is
complete. : '

COROLLARY. There is only one point z, syrnmetr:'c,i‘o a given point z,
with respect to a given straight line or circle v. : :

Proof. If v is a straight line, the statement is obvigus; Thus let v
be a circle, and suppose that besides z,, there is another point 2 # z,
Symmetric to z, with respect to v. Choosing a Mgbius transformation
W = L(z) mapping v onto a straight line I', we find that v, = L(i;'g) and
Wy = L(zp) are two distinet points symmetric with respect to T', which is
impossible. N

Remark. Suppose w = L(z) maps a straight line or ¢ircle ¥ onte a circle
I" with center wy, and let z, be the inverse image of w,. Then theipoint z,

1 Jt js in this sense that Mobius transformations are said to be Symmetry-preserving.,
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symmetric to z) with respect to ¥ must be mapped into the point at infinjty.
To see this, we note that Wy = co is symietric to Wy = 0 with respect to the
circle T, since any Straight line or circle passing through 0 and 0, ie., any
straight line bassing through the center of I', is orthogonal to I'. The
uniqueness of wy follows from the corollary.’

Let v be an arbitrary straight line or circle. A transformation of the
extended plane into itself, which carries each point z into the point z*
symimetric o z with respect to vy is called g Symumerry transformation with
respect t0 v or a reflection in v- In the case where Y is a circle, the trans-
formation is also called ap inversioniny. We now derive analytica] expressions
for symmetry transformations.

First let v be a straight line with an assigned direction, and consjder
reflection in v, The straight line + js completely characterized by one of its
poinis @ and by the unit vector

€ =cos 0 + isin 0

peinting in the direction of v. Suppose we carry out the entire linear
transformation '

2=LW =a+ &, (10.27)

which obviously maps the real axis onto T, since (10.27) corresponds o a
shift by the vector 4 {carrying thé origin of coordinates to the point ),
followed by a rotation through the angle 6 -about the point a. Since the
inwferse transformation w = L™*(z) maps vy onto the real axis, it maps every
pair of poinis z and z* symmetrio with respect to v into a pair of points
and w*'syrr_smctric with respect to the rea] axis. But the points w and w* are
represented by two conjugate complex numbers, i.e.,

W=t  wt=7j (10.28)

Therefore z — ¢ = e, and

E—a=e P, g, et = oloF , - (10.29)
Eliminating 7 froxln (10.29), we obtain

AR . (10.30)
According to (10.30), reflection in a straight line vy 80ing through a point g at
an angle 0 with the real axis can be accomplished by first constructing the

then rotating 7 — g through the angle 26 about the point a.
Nextlety be a circle, and consider inversion iny. Let RO < R < o) be
the radius and a the center of y. We begin by finding a Mé&bjus transformation



