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41. The Mapping w = cos =
In studying the geometric behavior of the trigonometric functions, we

shall confine ourselves to the mapping w = cos z, since the mappingw = sin z
can be written in the form

W = —cos (z -+ g).
and hence reduces.to a shift

£y =7z &

[ ST

of the z-plane in the direction of the positive real axis, followed first by the

mapping z, = cos z, and then by the mapping w = —Zg, Corresponding to a

rotation of the whole z,-plane through the angle = about the origin.
First we consider the inverse images of the point w under the mapping
W = ¢os z, i.e, the roots of the equation

COs z = (9.49)

where w is an arbitrary finite complex number. Substituting (9.38) For
€08 z and writing : '

e =t _ (0.50).

for brevity, we find that ¢ satisfies the equation

1 1 R
2+ = L
or - o - -
2wt 1=0, . - L (9.5)
with solutions _ o o
=w+ vVt 1] (=12. " '- S (9.53)

In (9.52) we do not write + in front of the radical, since the square root is -

already understood to have two values (see Sec. 6). Obviously, the product
of the two numbers f and 1, equals 1, and hence I1.9 0, £5 £ 0. If we denote

one of these numbers by v and the other by 1/=, (9.50) leads to two.cquations_‘

for determining z:

¢ =s(x0), e=lig

P S -
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According to Sec. 39, each of these equations has infinitely many solutions,
found by using formula (9.25), i.e.,

Z=lnle +iAgr, iz = ln]%‘ + fArg:f:

or
Z=Agr—ilalt], 2= ~(Arg* — iln |]).

Therefore the solutions of (9.49) consist of two infinite sets of points
% 2 (r =10, 1, £2,...) lying on the lines ¥ = *ln || parallel to the
real axis, where each adjacent pair of points z, is separated by the distance
2r, and the same is true of the :
points zz. For each point.z’, on the

line y == —In || there is a point 2 ) 7 ) , ) ()

on the line y = In [v| which is sym- 2, 2, - 2

metric to z; with respect to the origin TN In|T)
(see Figure 0.8). For w = +1 the I NN ¥
roots = and 1/v of equation (9.51) —egZ ol No> ,. :
become +1, and then both lines “ 20} S

coincide with the real axis, and both Freure 9.8

sets of points z, z; also coincide.

Thus, in any case, equation (9.49) has infinitely many solutions.. It follows
that 1) the function w = cos z maps the finite z-plane onto the finite w-plane,
and 2) each point w has infinitely many inverse images in the z-plane. More-
over, the mapping is conformal at ail points where

(cos z)’ = —sinz 5 0,
ie., for :
z#kr (=0, %1, +2,...).

Now consider the effect of the mapping w = cos z on straight fines
parallel to one of the coordinate axes. Every line / paraliel to the imaginary
axis has an equation of the form
Z=b+it (~w<i< ),

where & is a real number. The image of / under the mapping w = cos z is
the curve L with equation

W=1u+i=cos(b +it) = cos b cosh r — isin b sinh ¢ (9.53)

fef. (9.47)]. If b = fere, where k is an integer, (9.53) reduces to

W = €0s kr cosh t = (—1)* cosh t,

ie., w describes the ayuz l,v=10twice if k is even, or the ray u € —1,
v =0 twice if & is odd (these rays are both parts of the real axis). On the
other hand, if b = 2k — 1) /2, (9.53) reduces to

w = {~1)* i sinh ¢,
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Le., w describes the whole imaginary axis once in the direction of increasing
u if & is even, or once in the direction of decreasing u if k is odd. Finally, if
& is not an integral multiple of =f2, we separate real and imaginary parts of
(9.53), obtaining the following parametric equations for L:

# = cos b cosh ¢, v = —sin b sinh 1, (9.54)
Elimination of the parameter ¢ leads to
1 v?
cos’5 " sin¥p b (9.55)

where cos.b # 0, sin b 5% 0, This is the equation of a hyperbola with éemiaxes
fcos &) and |sin b, and with foci at the points w = +1.
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" Figurg 9.9

Remark. 1t should not be thought that the curve I with parametric
representation (9.54) consists of both branches of the hyperbola with equation
(9.55). In fact, it follows from (9.54) that « always has the same sign as cos b,
and only vchanges sign,varyingmonot‘onicallyfrom —C0 {0 + 0 as ¢ increases
if sind < 0, or from’ + o to —co if sind > 0. In other words, L actually
consists of just one of the branches of the hyperbola (8.55), i.e., the right-hand
branch if cos & > 0, or the left-hand branch if cos b < 0. In every case, the
mapping of the line / onto the curve L is one-to-one, and in fact, there is a
one-to-one correspondence between the points of each of the half-lines into
which /s divided by the real axis and the points of one of the half-branches
into which L is divided by its vertex.

Example. Consider the three lines

A x=mgx
f,B) x—3—n
=3

¢y x=4p (§§<b<27r)=

o vy

e i A e et ol
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shown in Figure 9.9(a). The images of these three lines are shown in Figure
9.9(b) and are A’} a ray along the negative real axis, &) the imaginary axis
itself, and C*) the right-hand branch of a hiyperbola.,

Next suppose z describes a line % parallel to the real axis, with equation
Z=t+ic (- <1< o),

where ¢ is  real number. The image of A under the mapping w = cos zis the
curve A with equation

W=u+iv=cos(t+ i) =coszrcosh ¢ — isintsinh e, (9.56)

If ¢ = 0, % is the real axis and A is the curve with equation

W=cost (- << ),

ie., w describes the segment —1 < < 1 of the real-axis infinitely many
times, in fact twice every time z goes a distance 2r along . If ¢ # 0, we

s {r) ‘ ()

Fisure 9.10

' éepar’afe real and imaginary parts of (9.56), obtaining the following param-

etric equations for A; .

1 = cosh ¢ cos ¢, v = —sinhesint (9.57)
Elimination of the parameter gives

u* v
coshzg SnhTg ~ 1 )

where cosh ¢ 3 0, sinl ¢ s 0. This is the equation of an ellipse with semiaxes
|cosh ¢| and [sinh ¢|, and with foci at the points w = #1. It follows from
the representation (9.57) of the curve A that the point w describes the ellipse
infinitely many times in the same direction, where each cireuit around the

ellipse corresponds to a displacement of the point z a distance 25 along the
line A. The two lines

A =0,
B) Y=rc0,

and their images 4’ and B’ in the w-plane are shown in Figure 9.10.
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To summarize, the mapping w = ¢os z transforms the two one-parameler
Jamilies of straight lines parallel to the coordinate axes, but distincr. from the
lines x = for (ke = 0, + L, £2,...)ory =0, into a one-parameter Jamily of
confocal hyperbolas and a one-parameter family of confocal ellipses, with
common foci at the pointsw = + 1. Moreover, since the mapping is conformal
at all points of the z-plane except at the points

z=kr (k=0,%1, +2,..), (9.58)

whose images are precisely the foci w = +1, and since the two families of
lines in the z-plane form an orthogonal system (see p. 134}, it follows that
the family of hyperbolas and the family of ellipses in the w-plane also form
an orthogonal system.

42. The Image of a Half-Strip’under w = cos 2

We now pose the problem of finding a domain G in the z-plane on which
the function w = cos z js one-to-one. The. choice of such a domain can be
made in many ways. It is only necessary to make sure that G does not
contain two or more inverse images of the same point w. For example,

b {z)
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Froure 9.11 | .
Suppose G is the open half-strip of width A 0.<4 <2n) whose 'siliiés are
parallel to the imaginary axis and whose base is a segmieat of the real axis
[see Figure 9.11(a)]. Then w = cos z is a one-to-one function on G. In fact,
a5 we know from the preceding section, if Zo€ G and wy = cos z;, all the .

other inverse images of Wp must lie either on the line / parallel to the real axis

with respect to the real axis. But the distance from 2, to any other inverse
image of w, lying on [ is an integral multiple of 2m, and since the width of
the half-strip does not exceed 2r, none of the other inverse images on / can
belong to either G or its boundary. Moreover, & and the line / obviously

+
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have no points in commen. It follows that the function w = cosz is a
one-to-one conformal mapping of G onto some set of points % in the w-plane
[note that none of the points (9.58) belongs to G).

To construct &, we proceed as follows: Let the point z = x 4- iy trace
out the boundary v of the half-strip in the way indicated in Figure 9.11(a),
Le., let z consecutively traverse the following three curves in the z-plane;

A} The left-hand side of the half-strip, in the direction of decreasing y;

B) The base of the half-strip, in the direction of increasing x;
C) The right-hand side of the half-strip, in the direction of increasing y.

This causes the image point w = y + v =coszto consecutively {raverse
the following three curves in the w-plane, as indicated in Figure 9.11(b);1

A’) Half of a branch of a hyperbola, in the direction of decreasing v;

B') Part of the segment — | < # < 1 of the real axis, first in the direction
of increasing #, and then in the direction of decreasing u;

C") Half of the branch- of another ‘hyperbola, in the direction of
decreasing v.

The union of the three curves A’y B" and €", which we denote by I', is
the image (under w = ¢os z} of v, the boundary of @, Clearly, " is a closed
Jordan curve, passing through the point at infinity: Therefore, I' divides
the extended w-plane into two disjoint domaing Dy and Dy, with I' as their
common boundary (cf, Secs. 18, 22). According to Theorem 6.3, one of
these two domains is the set ¥, theimage of G. To ascertain whether D, = &
or Dy = %, we chioose a point zy € G and find its image w, = cos z,. Clearly
wo ¢ I, since otherwise one of the inverse images of w, would belong to @
and another to v, which, as we have Just seen, is impossible. Therefore, w,
belongs to either Dy or D,, and the demain cdntaining wy is & (sec the
remark on p. 100).

Remark 1. In the case of an elementary mapping like w = cos z, we can
use the detailed geometry of the mapping to prove that @ coincides with one

*..of the domains D, and D into which ' divides the w-plane, thereby avoiding
" the topological considerations of Chap. 6. Let z, be ap arbitrary (but fixed)

point of G, and Iet Wo = cos zy be its image. As already noted, one of the
domains D, and D contains wy; let this domain be denoted simply by b.

First we show that the image w; of any point z, € G different from z, belongs

to D, so that ¥ = D, Through the point 2o draw the line / paralle] to the
real axis, and through the point z; draw the line parallel to the imaginary axis.

* ¥ Of ¢ourse, the specific appearance of the curves 4, B and C’, and the directions
in which they are traversed, depends on the location and widih of the half-strip in the
z-plane, In this respect, Figure 9,11 Tepresents only one possible case (see Remark 3,
p. 157 and Problem 9,16). For example, if the half-strip Is of width 2m, the curve B’ will
consist of the whole segment ~1 < « 5 | traced out Iwice,
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Let 2z, be the point of intersection of these two lines [see Figure 9.11(a)).
Then the polygonal curye!?
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A= Zpzy + Zazy

joins z4 to z;, and moreover A < G. (Either zy = z, or z, = zy Is possible,
but not both.) The fmage of % under the mapping w = ¢os z is a curve

- ————
A = wowy + Wow,,

where H’I;:V.; is an arc of an ellipse and ﬁ;;v: is an arc of a hyperbola, both
withfoci 4 1 (w, = eos Z1, W = €05 zp). Clearly AT = 0,since x N ¥ =0
and no pair of points, one in G and the other on its boundary, can have the
same image. Therefore A < D, and hence wy € D, since A connects Wy to
wy, Le.,  © D, as asserted,

Next, let w' be a point of D different from w,. We now show that w' has
a (unique) inverse ‘image belonging to G, so that ¥ = D, Since w'¢ I,
there is a unique ellipse with foei +1 passing through w,, and.a unique
hyperbola with foci + 1 passing through w'. Let w" be the point of inter-
section of these two curves [see Figure 9.11(b)]. Then the corve

— —_————
A = wew” 4wy

joins wy to w', and moreover A < D. (Either wy = w” or w" = w’is possible,

but not both.) Any inverse image of A under w = coszisa
A= oz 27,

where zy2” is a segment of a line parallel to the real axis, 2"z’ is a segment of
a line parallel to the imaginary axis, and #, z" are any two points such that
W = cos z', w" = cog 2", Obviously ANy = 0,since AN T = 0, Therefore
A = G, and hence z’ & G, since 2 connects z, to z', i.e,, ¥ < D, as asgerted,
and the proof is complete,?

Remark 2. We now indicate another way of deciding which of the two
domains D, and D, with boundary I' coincides with . This method does
not require knowing the image w, of a point z, € G, and goes as follows: Ag
—_—

12 By ab we mean a curve joining a to & (the curve in question is always apparent
from the context). In the case where the curve is the line segment joining « to b, we

write 2b instead of ab. If Y and & are two curves such that the final point of y coincides
with the initial point of 3, then by v + 5 we mean the ariented curve obtained by first
going along y from jts initial point to its final point and then along & from its initial point
to its final point. ‘We use the symboi -+ instead of U to emphasize thaty + & is traversed

- - . . . —— —— ——— ———

in the direction indicated. It should be noted that ZoZa \J Zazy = 22y U Zo7,, but
iy o~ . .

Zaz1 -+ ZzoZz s meaningless.

® We can now state that 2', 2" and hence z,7°, 27’ are unique, since 2’ € G, z¥ e G,

polygonal curve T
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a moving point z traces out the boundary v of the domain G in a certain
direction, the image point w traces out the boundary I of the domain # in a
corresponding direction. For example, the direction along vy indicated by the
arrows in Figure 9.11(a)- corresponds to the direction along I indicated by
the arrows in Figure 9.11(b), and if one of these directions were reversed,
the other would also have to be reversed. Suppose an observer (labeled I
follows the moving point z along v, and suppose another observer (labeled
IT) follows the moving image point w = cos z along I'. Then if T finds & on
his left, IT finds & on his left, while if I finds G on his right, I/ finds ¢ on his
-right. To prove this, suppose I moves along the side 4 of the half-strip @ in
the direction shown in Figure 9.1 i(a) and hence finds G on his left. From
some pointo € 4 (Im « > 0) we drawa segment 12 of the normal to A pointing
into G, Le., a certain line segment parallel to the real axis. Obviously @
muyst contain the image of this segment, which is a6értain elliptical arc e
drawn from the point § = cos « belonging to 4’, as shown in Figare 9.11(b).
. In other words, % is uniquely characterized as the domain with boundary I*
into which e points. The assertion that [ finds G on his left is equivalent to
the assértion that in order to enter ¢ along the segment # at the point «, T
AI'I"lL'i$t make a “left turn,” i.e., a counterclockwise rotation through 90°. But
W = cos§ z has-a nonzero derivative at o, and hence is a conformal mapping
s vof the first'kind which preserves not only angles but also the directions in
’ " which they are measured, as discussed in Sec., 31. Therefore, in order to
| enter ¥ along ’ghg arc ¢ at the point B, /7 must also make a left turn, ie., I7
"] finds & on his left, as required. ' -
f

ELEMENTARY ENTIRE FUNCTIONS

()

{w)

H o X [ v

Froure 9.12

Remarle 3. Once again (¢f. footnote 11}, we mention that the specific
appearance of the domain @ depends on the location and width of the half-
strip G. The case where the base of & is contained in an interval of the form
fler, (k + D= is shown in F igure 9.12. The situation illustrated by Figure
9.11 corresponds to the case where the base of G is an interval containing a
point of the form /= in its interior. In this case, the boundary T is “folded
V over” at either w = —1 or w = 41 (or both).




