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39, The Mapping w = ¢
1t follows from (9.22) that ¢* is nonzero for all z and
fe?| = ev, Arg et = y + 2.
For z = iy (x = 0) we obtain Euless Jormula .
e¥ = cosy + isiny S {9.23) .

{see p. 8). Using (9.23), we can replace the trigonometric form, of a complex, .

number .
z = r{cos O + {sin @)

by the more congise polar form

z = pgi?,

It is apparent from (9.22) that the exponential is pelrioc'z'fc 'rin, z with period

2wi. In other words, if 7 is changed by 2ni, 5o that y is.chariged by 2%, the -

value of e* does not change:

pstZnt .

We now show that 2« is the Sundamental (or primitive} period of the function

€, i.e., that any other period w of &* must be of the form 2k, where Is an

integer. To see this, let @ = g + iB. Then

es-“‘fd = e:
for any z, and in particular,
e = " = 0% (Cos 8 + fsin By =1

for z = 0. But this means that fe®] = e* = | which implies « = 0, and
hence cos B + isin 8 = 1 which implies B = 2k=i, so that

& = o+ iff = deni,
as asserted.
The expression ® will be regarded. as meaningless, since

lim ¢

2= @
does not exist. This can be seen from the fact that ¢ — oo ag x — -} o0,
whereas e ~> 0 a5 x = — oo, In particular, it follows that e* cannot coincide
with any polynomial, ie.] e is actually an entire transcendental funetion,

since any polynormial {excluding the trivial case of a constant) approaches
infinity as z — co, : :
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under the mapping w = ¢, However, as we now show, any other finite
point of the w-plane does befong to this image. In fact, from the equation
W = ¢, where w # 0 is given and = = ¥ + iy is unknown, we obtain

W =e* or x=1In ||
and

ATgw =y + 2%kn or Yy = Arg w.

- Therefore the inverse images of the point w can only be points of the form

z=1n|w| + i Arg w, 9.24)

Obviously there are infinitely many points (9.24), since Arg w takes infinitely
many values, all differing by integral multiples of 2r, Moreover, each of
these points is actually an inverse image of w, since

exp [In [w| 4 i Arg w] = plntwi {cos Arg w -+ /sin Arg w)
= |wf (cos Arg w + {sin ATgw) = .

Therefore the set of all roots of the equation e* = (w # 0) is given by the
formula . .

z=1Inwl + iArgw = n [w| + iCarg w + 2kn), (9.25)

where £ =0, 1, +2,.... These points all lie on the same straight line
parallel to the imaginary axis, and the distance betwoen any two consecutive
points along the line s 2x. Thus the function w = o= maps the finite z-plane
onto the domain obtained from the finite w-plane by deleting the single

= _ HeFcosy)  8(e* sin .
(e)=“——5~r-+z—(-a—x-l)=ex(cosy+ismy)=e’

does not vanish for any value of z,
Now suppose z traces out a straight line parallel to one of the coordinate

axes (see Figure 9.3). For example, consider the [ine
Z=p 4 (9.26)

parallel to the imaginary axis. Then the image of (9.26) under the map

. in
W = &% i3 the curve bing

W= e’ (cos ¢ -+ ;sin 1), 9.27)
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i.e., w traces out a circle of radius e®
48 z describes the line (9.28) once
increases continuously from - eo t
infinite number of times in the posi

) yr {z)
c{ ’
T
FIGURE 9.3
Next consider the line
Z=t4 e

parallel to the real axis. Then the image of (9.28) under the mapping w

is the curve

from 0 to co {of course, the limits 0 and o a
Thus, wunder the mapping w = &%,
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9o < Imz < ¢

CHAP, 9

with its center at the origin, Moreover,
n such a way that 1, the ordinate of z,
0 -+ co, w describes the circle (8.27) an
tive (counterclockwise) direction,

rigin increases continuously
re excluded, sincs
a family of lines

ain G consisting of all points z such that

fwl = ¢,
parallel to the imaginary ..
les with the origin as center,
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where 91 — oy = 4; guch 5 domain will be called an (open) strip of width 4.
Suppose 0 < f < 2m, and let & be the image of G under the mapping w = ¢=,
It follows from the considerations just given that % is the interior of the angle
of / radians'with vertey at the origin, formed by the rays

Argw=cpo+2lm, ATg W = @, 4 Yen (lc=0,i1,i2,...)

(see Figure 9.4). Moreover, the correspondence between the domains G and
% under the mapping w = ¢ ig one-lto-one, ‘To see this, we recall that the
inverse images of a point we & are all of the form (9.25), and hence differ
only in the values of thejr imaginary parts, In fact, any two points (9.25)
lie on a line parallel to the imaginary axis, and the distance between them
is an integral multiple of 2, However, by assumption, the width % of our
strip does not exceed 2r, and G can contain only one inverse image of the
point w, i.e., not only is w = f(z) single-valued function on &, but jts
inverse z = f “w) is a single-valued function on @ — SG). Thus, the
exponential finction w = o* iy & one-to-one conformal mapping of an open
sirip of width b < 2% with sides parallel to the real axis onto the interior of an
angle of b radians with vertex ar the origin,
Next consider a straight line with equation

z=(1 + i)t + 15 (~o0 <t < o), (9.30)

which is not parallel to one of the coordinate axes. Here o # 0 is the slope

of the line (9.30), and 5 is jts y-intercept. The image. of (5.30) under the
mapping w = ¢ is the curve

W= exp[f + i(ar + B)] = et[cos («t + B)-+ isin (a2 & B)].

Therefore

[W] = r =g :p=A:gW=ocr+b+21m,

and'eliminating the parameter ¢, we obtain

reexp (e — b — 2km)fe]. . (8.31)
If we set B = ® = 2k, (9.31) becomes

U r= cetls, 9.32)

,!wh'e're c = e“’f""‘., This is the equation (in polar form) of g logarithmic spiral.

Sinice the. mapping w = ¢ ig conformal, and since (9.32) is the image of the
ling (5.30) intersecting al] Jines parallel to the real axis at the same angle
arc tan «, it follows that ‘the logarithmic spiral intersects the images of all .
these lines, i.e., all rays emanating from the origin, at the same ap gle arc tan «,

- 8 property which characterizes the logarithmic spiral (see Figure 9.5),
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Remarl. As is well known,®

x _ . f 113
& = lim (1 + n) (9.33)

e~ o

for real x. Using (9.33), we can easily show that
. z\"
= tim (14 3 (9.3

i w

for complex z. In fact, writing

(z) {wl

/

X
FiGune 9.5
we have . . g
I S x)® J:.]’ |
BN ”"‘“"n“; - [(1 +H) +hl
. AR/ | '
arg z, = n arc fan T+ G
Therefore ) . oo
. wz o e
Jer:a[znl &nl_i‘n; (1 . .2?1;.5) = gle‘ ) C

. . 'l
where we drop (x® - y%)/n? in comparison to 2x/n and use (9.33). Moreover,
replacing small angles by their tangents, we see that .

. o n(yfn)
ArEen s n e em =

—_—

¢ See e.g., R. Courant, Differential and Integral Calculns, Vol. I, second edition ,

(translated by E. J. McShane), Interscience Publishers, Inc., New York (1959}, p. 175.
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But then, according to p. 34,

o\ n
lim (1 +:) = lim z,
= o I H-m
= lim [z,| [cos (lim arg 2,) + isin (lim arg z,)]
M=o o=t @ N =+ w
= ¢*(cos y - isin y),

and comparison of this result with (9.22) proves (9.34).

¥ {2} v ()
V .
AT /’
4, é: R ==L
- I/ o 0| o
Figure 9.6

Formula (9.34) shows the connection between the mapping w = &% and
the mapping w = (z — &) studied in Sec. 37. We note that &* is the limit

as # -+ oo of the mapping
z\" 1 " "
W = (l + E) == iz~ (~m, (9.35)
which, as we know, maps the interior of an angle 'of ifn radians (0 < 1 < 27)
with vertex at the point Ay = (—n, 0) and sides consisting of the rays

X = —n, y=20
and

Arg(z - n) = ,L; + 2kx,

onto the interior of an angle of % radians with vertex at the origin and sides
consisting of the rays

Atgw =0, Argw =4 + 2mm

As n— oo, the vertex A = 8pproaches infinity along the negative real axis and
the length -of the segment G5, (see Figure 9.6) approaches

. h
lim ntan~ = i,
e o i

so that the limiting position of the ray 4,B, is the line ¥ = h, which together
with the real axis forms the boundary of a strip of width 4. Moreover, as
n— oo, the rays emanating from the vertex A approach lines parallel to the
real axis and the arcs of circles with A, as center approach perpendiculars to
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the real axis lying inside the strip. In other words, in the limit as 7 — co,

the effect of the mapping (9.35) is exactly the same as that of the mapping
W= g%,

40. Some Functions Related to the Exponential

According to the formulas

€% = ¢cos x + fsin x, "™ = cos x — Isin X, {(9:36)
we have
ix —ix ix —tx
et + e . -8
COs X = 5 ) Sl x = 57 9.37) .

for arbitrary real x. If 7 is an arbitrary finite complex number, we defini

two (entire) triconomerric Junctions cos z-and sin z, called the cosine and .
sine,® by simply changing x to z everywhere in (9.37):

eiz 4 e—tz . e!z _ e-{z
= 1 Smz = -
2 2

This seems quite natural, since the functions cos z and sin z are obviously

Cos =

analytic for all z, and reduce to the familiar functions cos x and sin x when -
# = x 1s real. It follows from the definitions (9.38) that cos z is- even and -

sin z is odd, i.e., that

cos (~z) = cos z, sin{~z) = —sinz
Moreover, (9.38) implies the formulas
e” == cos z -+ fsin z, €™ = cosz — isinz, (9.39)

which generalize {9.36). ,

The functions cos z and sin 2 are both periodic with period 2=, since
changing z to 'z’ + 2x in (9.38) amounts to multiplying the exponentials by
e*2 = 1, Actually, 2r is the fundamental period of cos z and sin z, ie,
any other period is an integral multiple of 2r, as we now verify for cos z. Ir
o is any period of cos z, then

cos (z + w) = cos z,
and hence, setting z = /2, we obtain

cos (m + g) = 0.
But this implies

exp [t‘(m + g)] + exp [——f(m + g)] =0,

exp {26 + )] = —1,

of

 Trigonometric functions of 4 more general nature are discussed in Sec. 52.

(9.38)| '

R T PRIE e ]

o

et ettt et e emts

it it i e

SEC. 40 éLEMENTAnY ENTIRE FUNCTIONS |47
Therefore, according to formula (9.25),
Qo +m) =1In|-1] + FAIg(—1) = i(r + 2ikw),
so that
= 2kr,

as asserted. Similarly, it can easily be verified that 2 is the fundamental
period of sin z, _ .

Next we derive addition theorems for the funcfions cos z and sin z, ie.,
formulas relating the quantities cos (z1 + zz) and sin (z; + zo) to the
quantities cos z,, sin z,,-cos z, and sin Zs, where z; and z; are arbitrary
complex numbers. As might be expected, the required relations are immediate
consequences of the addition theorem

_ eXp (21 + 23) = exp z, exp z,
for the exponential. In fact, replacing z by z; -+ z, in the formulas (9.39),
we find that
€os (2, + 2) + isin(z; + z5) = exp [i{z, -+ z2)] = exp (iz;) exp (iz,)
© " ={cosz + isinz)(cos z, + isin Zp)
(cos z; cos z, — sinz, sin Zp) + i(sin z; cos zp -k cos z; sin zy)

and. . (5.40)°

}J ‘cos'(z, "13-;2) - z:sin,(zl + zg) = exXp [~z + zo)] = exp (—izy) exp (—iza)

= {cos z, — isinz;)(cos z, — 7sin z)
= (cos z, cos z; — sin z, sin z5) — i(sin z, cos z, + cos z; sin -
. . S . (9.41)

First adding (9.41) to (9.40), and then subtracting (9.41) from (9.40), we

. obtain the addition theorems

cos (2, + 25} = £O§ 71 €08 Zp ~ sin z, sin 7, (9.42)
Sin (2 -+ zs) = sin z; c0s z, 4+ cos z, sin Za,
which are basic in the theory of trigonometric functions. In particular, the

so-called reduction formudas are implicit in (9.42). For example, setting
z) = z, 2, = wf2 in (9.42) gives

z coS = sinzsins = —sinz
cos z+5 —c05202 5 z,
- FLA N « T . T
SH|Z + 5] =5InZCos + cos zsin= = cos 3,
2 2 2
setting z; = z, z, = =, gives
€08 (z + ) = —cos z,
sin (z + n) = —sin z,
and so on. Moreover, substituting z, = z, z, = —z into the first of the

formulas (9.42), we obtain the following basic relation between cos z and

gin z:
cos?z + sinz = 1. {(9.43)



