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its vertex at the origin is enlarged » times. Let / be a curve in the ¢-plane,
with equation € = A1}, t € [a, b], which goes through the point £ = 0
and has a tangent + with inclination 0 at ¢ = 0, Then, by a slight
modification of the previous argument, we find that the curve 7 in the
7-plane with equation n = PIAO] = A@) goes through the *point
" = 0 and has a tangent with inclination '

O =nd — Arg an

at v = 0. The test of the proof follows as before (note that w = 1/9).

37, The Mapping w = (z — a)?

We now make a detailed stiudy of the r;nappir':g e .

W= {z — gp

This function maps the extended z-plane onto the extér;df:d_ w-plare in such a -

way that every point w has distinct inverse images, ‘with the exception of
the two paints w = 0 and w = o, for which the # inverse images “coalesce ™
into the single points z = g and % = oo, respectively, To-find the 1 inverse
images of 1w when w # 0, w2 o0, we solve (9.8) for 2, obtaining'.

Z e a+ﬁ=a+1’ym (cosh-_Arfw—J—.!'si'rl'A_i;fL

with its center at the point z = g, The mapping (9.8) is conformal at al
points except z = g, 7 ~ ©, and every angle with its vertex at one of these.
two points is eularged 1 times,

To get a clearer picture of the mapping (9.8), we observe that

[w| = |z — al™,

Argw = n Arg (z — a,.

which implies that every circle of radius » with its center at the point z = o
is mapped into a circle of radius 7" with its center at the point w = 0. More-
over, as the point = goes around the circle [z — af = r once in the positive
direction [so that Arg (z — a) increases continuously by 2x}, the image point
W goes around the circle [w] = 1 5 times in the same direction [since Arg v

increases continuously by 2nn]. We also note that as the point z sweeps nut
the ray
ATz ~2) = @y + 24w =0, 41, +2,...)
going from a to oo, the image point w sweeps out the ray
AIg W = npy + 2 (m=0, +1, t2,..)

going from 0 to oo,

>y, '_I(9.8):

u) ' (9:.9>.

Obviously, the » distinat points (5.9) lie at the vertices of a regular‘ n-gon .

350 e e
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INext consider the domain ¢ consisting of all points z such that
Po + 2kr < Arg(z — a) < @, + Uer (]c:O,;f;I,iiZ,...),

where 0 < 9; — ¢ < 2x/n. Such a domain will be called the interior of
the angle of ¢, — ¢, radians formed by the rays

Arg(z — a) = g + 2w, Arg(z — a) = @, + 2kn k=0, £1, +2,...),

the term angle itself being reserved either for the figure formed by these two
rays {an “unbounded curve”) or for the quantity ®1 — ¢ Then the jimage
of & under the mapping (9.8) is the domain

npy + 2AnE < ATg W < o, 4 2mx (m=0,+1, +2,...),

L.e., the interior of the angle of n(p; ~ @o) radians with itg vertex at the origin
of the w-plane (see Figure 9.1). Not only is the function w = (z — a)*

(7}

Figurs 9.1

conformal on @G, as already noted, butit is also one-to-one on G. In fact, since
W = (z — a)" is single-valued, we need only verify that every point w has only
one inverse image in G. Since the » inverse images of the point w lie at the
vertices of a regular n-gon in the z-plane withicenter at @, two inverse images
can belong to the interior of the same angle with vertex at ¢ only if the angle
exceeds 2ncfn. But 0 < g, — ©o < 2m/n by hypothesis, and hence every point
of & has only one inverse image in G, as asserted. Thus, the finction
W= (z — g} is a one-to-one conformal mapping of the interior of one angle
onto the interior of another angle which is n times larger,

OF course, it would be quite incorrect to conclude that the function
W = {z — @) maps every straight line into a straight line, and every circle
into a circle. For example, suppose a = 0, n = 2, 50 that w = (z — g)
reduces to w = z2, and consider the effect of this mapping on straight lines
parallel to the coordinate axes. Every line parallel to the imaginary axis
(except the axis itself) has am equation of the form

Z=b+it (-0 <t< )
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where b 5 0 is a reai number, and the image of this line.under the mapping
w = z% has the equation

W= (b + if)2, (5.10)

Separating réal and imaginary parts of (9.10), we obtain the.corresponding
parametric equations

U= ph*— 13, v = 2bi,

where 1 and v are the rectangular coordinates of the point w. Elimination of
the parameter ¢ leads to

v? = 4532 — ), (©.11)

which is the equatibn of a parabola opening to the left, with axis lying along
the real axis and focus at the origin. Similarly, every line paralle] to the real
axis (except the axis itself) has an equation of the form

Z=t+ic (~c0 <t < o),

where ¢ # 0 is a real number, and it is easily verified that the image of this
line under the Mapping w = 2% is the parabola.

v = 4c3(e? 4 ) (9.12)

opening to the right, with axis tying along the real axis and focus at the origin.
Thus, the mapping w = 72 transforms the tweo one-parameter families of
straight lines parallel to (but distinct from) the coordinate axes into Iwo one-
parameter families of parabolas (9.11) and (9.12), with axes lying along the
real axiy and @ common Jocus at the origin (see Figure 9.2). Moreover, since
the two families of straight lines in the z-plane form an orthogonal system
(i.e., every curve in one family is orthogonal to every curve in the other
family, and vice versa), and since the mapping w = 22 is conformal (except
at z = (), it follows that the two families of parabolas in the w-plane algo
form an orthogonal system_s

Remark. 1t should be kept in mind that w = 22 is not a one-to-one
mapping, and in fact, eVery point in the w-plane except w = Q0 and w =" o
has two inverse images, In particular, the inverse image of the parabola
(9.11) consists of the two straight lines z = b + it and z = ~b + ir which
are symmetric with respect to the imaginary axis, while the inverse image of

the parabola (9.12) consists of the two straightlinesz = ¢ + icandz = r — ic.

which are symmetric with respect to the real axis. However, if we -confine
ourselves to a half-plane & whose boundary consists of a line passing through
the origin (i.e., the jnterior of an angle of = radians with vertex at the origin),

® The x and y-axes themselves are orthogonal, but their images, i.e., the line segments
=0, v=0and u< 0, v = 0 (each traversed twice) are not orthogonal, since the
derivative of w = z* vanishes at z = 0 {cf. Theorem 9.2),

mimm = driar meme
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then the correspondence between ¢ and its image % under w = 2 js one-to-
one. In fact, & is the interior of an angle of 2w radians with vertex at the
origin, both of whose sides coalesce to form a single ray emanating from

the origin.
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38. The Exponential

An-entire function which is not a polynomial is called an entire iran-
Scendental funetion. The simplest example of such a function is the exponential
(function) &% or exp z, obtained by suitably extending the familiar function e,
defined for the real variable x, to the case where x takes arbitrary complex
valugs, i,e., is replaced by the cornplex variable z = x + iy. It is not hard
to show that the real exponential f{x) = &* is the unique function with the

followitig properties:

1A (x).is defined and single-valued for all real x, takes only real values,
* ' and in particular takes the value e when x = 1;
-y f(x).ga_tisﬁes the addition theorem
e L SO+ x2) = fe)f ()
3. f(=) s continuous for all x.°

-Thé'compllex'function J(z) = & can be characterized in much the same
way: '

¥ This result follows at once by a specialization of the proof of Theorem 9.3.



