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GEOMETRIC INTERPRETATION
OF THE DERIVATIVE.,
CONFORMAL MAPPING

31. Geometric [nterpretation of Arg f'(2)

I.:ct I’be a continuous curve with equation z = M#), ¢ € [a, b}, and suppose
A#) is differentiable at a_point #, € [a, b] (relative to the set [a, B]). Let {t.}

be an arbitrary sequence of points in [a, &]-converging to ty (1, # 1y), and
consider the difference quotient

A a) — M 0, .
T = (tt: - fu(t . @.1)

Obviously r, = r, = X {to} 25 n -+ o0,

DEFINITION. The curve 1 is said 10 have g tangent at the point z, = A(tnj
if the lipit : ' ’

8= lim Args, : (8.2)

exists, and then the tangent is said to have inclingtion b. Geometrically,

the tangent 1o ] at zy is represented by the ray < emanating from z, which
makes the angle 0 with the positive real axis.? '

" Formula (8.2) means that given any ¢ > 0, there is an integer N(e)'> 0 and &
sequence {6}, where each 0, is a valie of Arg 1o, such that [0, — 0} < eforally > N(E).
Clearly, 8 is only defined to within a multiple of 2rx. The angle 8 will always be measured
from the positive real axis to the tangent v (in the counterclockwise direction for a
positive value of 8), "
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Remark 1. Clearly, if 2'(t;) 5t 0, / has a tangent at z,, since

= lim Atgr, = Argry = Arg ¥'(ty)

(see p. 35); and then the inclination of the tangent is just the argument of the
complex number A'{f). On the other hand, if A (o) = 0, ! may or may not
have a tangent at z,, since-the fact that r, —» 0 implies only that Jr,{ = 0 and
says nothing about the behavior of Argr, (see p. 33). However, if / has a
tangent at zo, then Mz,) # A(z,) for all 2, sufficiently close to 4, since Arg0

is meaningless,?

- Remark 2. As we have defined it, the tangent is a ray, not a vector, If
N(to) # 0, we can also introdice a itangent vector to [ at zy, defined as the
vector of length |M'(z5)| which makes the angle © with the positive real axis,

THEOREM 8.1. Let G be a domain, and let f(2) be a continuous function
of a complex variable defined on G. Suppose f(z) has a nonzero derivative
F(z0) at a point z, & @, and let | be a curve which passes through z, and
has a tangent + at 2,. Then w = J(2) maps linto a curve L in the w-plane
which passes through the point wy = f(z,) and has a tangent T at w,. More-
over, the inclination of T exceeds the inclination of = by the angle Arg f'(z,).

Proof. Suppose I has the equation z = A(z), tela, b], and let
zy = Mtg). By hypothesis,
B = Iim Argr,

- o

exists, where r, is given by (8.1). The function w = J{z) maps ! into a
curve L in the w-plane with equation

w=fMOl = A, tela bl (8.3)
“where i, = f{(zo) = A(to).. Let {1,} be an arbitrary sequence of points
in [a, b] converging to #,, and let.

' _ A = Alt)
AR

k

R,

Then the tangent to L at w, has inclination .

© = lim Arg R,

n-—+ i

provided this limit exists. Clearly we have
: R o M) = Alo) Nt) — Mto)

" 7\(trz) - l(to) I, — 1y

* This condition js automatically satisfied if’ A’(ro) s 0, since otherwise r, = 0 for ¢
arbitrarily close to fo, which implies that M(¢g) = 0, contrary to hypothesis,
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where the first factor jn the right-hand side is weil defined, since M) Alto)

for all ¢, sufficiently close tq fh (Iis assumed.to have a tangent at Zo).
Therefore C : .

e

]

lim Arg R, = lim Argww
e o n} [+) a "™ ig

R

= lim Arg 22 %o, _ oo Arg¥n=Wo \ o Argr, (8.4
- o Za“"ZO me+ o zn"—Zo Nerm
= Arglim 22" Mo | o ATE f"(z0) + 8,

S R Zn"—Zo

where v, = Alt), z, = AMt,) and B is the inclination of + atzy.d Itfollows
from (8.4) that @ exists and that X <
8 -0 = Arg f(z,), )
as asserted. We note tfiat ‘things are particu]éﬂy simple. in the cage
where 3'(25) % 0, since then :
O = Arg A'(y,) = Arg [ (2N (2)] .
= Argf"(z0) + Arg Mto) = Arg fz;) + 0,

by the rule for differentiating the composite function (8.3).

Now let /, and Iz be two curves with 4 common initial point Zy, which

have tangents , and 7z at z,, and Suppose the"a"nglf: between =, and Ty ig
measured from v, to T2 Suppose /; and %3 have'images L, and I, under

J(2). Then, according to Theorem 8.1, if f'(z;) ¢ 0, L; and L, have tangents
Ty and T, at the point w, = Fz0), where Ty and Ty are obtained by rotating
N Ty and T, through the Same angle Arg f(z,). Therefore the angle between
' Ly and L, equals the angle between /, and L, and is measured in the same

direction, i.e., from Lyto L, In other words, a continuous function w ——{f(z) '

preserves angles between clrves. A mapping by a continuous function which
preserves angles between Curves passing through a, given point z, is said to
be conformal ar zp (cf. p. 88). Ifa conformal mapping preserves the directions
in which angles are measured (as well as their mggnitudes), it is called g
conformal mapping of the first kind, but if it reverses the directions in which

T In reversing the order of the operations Argand lim » We have used the fac; that
Her @
Fza) 0.
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THEOREM 8.2. Let G be a domain, a;m’ ler f(2) be an analytic fimction
on G. Then f(2) is a conformal mapping of tke first kind ap every point of
G where f'(z) 0,

Example 1, Reflection in the real axis, i.e., the transformation w = 54

is a conformal mapping of the second kind. A more general example js the
complex conjugate

w = f{z)
of an analytic function J(2), where 7 "(2) £ 0.

Example 2, At a point where the derivative vanishes, angles may or may
not be preserved, as can be seen by comparing the mappings

i J1(2) = r¥cos & + 1gin Q) = g,
Jo(2) = r3(cos 29 + 7sin 20) = 22

at the point z = g,

32, Geometric Interpretation of L7 (2)]

As we have just seen, Arg f(z,) represents the rotation undergone by the
tangent to a curve / at the point z, e ! when transforming to'the pew curve
L = f({) and the new point wy = f(z,). In particular, if £'(z,) is a-positive
real number, the tangents to / at z, and to 7, at wy are parallel and point in
the same direction, ‘

To explain the geometric meaning of the quantity [f'(z,)], i.e., the absolute
value of the derivative at z,, we note that

ol = tim U =S

2~z Z"‘-‘Zn]

The numbers [z — Zo| and | f(z) — J(z0}| are the distance between the points
z and z, in the z-plane, and the distance between their images f(zy and Jlzo)
in the w-plane, respectively. Thus, interpreting

S @ = [ (Zn)]

lz ~ EN

as the lineay A,;qu_}ﬂj’icar_'ion_mtfo (or simply the magnification) of the vector
z — zp iinder the mapping w = f{z),* we can regard | f'(z,)| as the magnifica-
tion at the point zy undey 1y = S

s Here the word magnification is used in a general sense, _and can correspond to
stretching if | f(zp)] > 1 or shrinking if | f "(z0)] < 1 Ior neither if I (zel = 11

Rt
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,Renmrk.. The size of the magnification at the point z, does not depend
on the choice of the finite vector z %o drawn from z,, since |/"(za)] is not

the actual magnification of any such vector, but rather the limiting ~ -

magnification as z — z,,

az -+ p
cz 4+ d

33. The Mapping w =

‘ To illustrate the above considerations, we now examine the fractional
linear transformation or MEbius transformation , :

az + b T
L(Z) = m! (8.5)

where q, 5, c,'d are arbitrary complex numbers (except that ¢ and 4 are not
botl} zero). First suppose that ¢ — 0. Then L(z) reduces to

L=wtp Geod p-na, g

Arga = e, ferf =

3

where I is an integer, and then both the rotation and expansion'produce no
effect. In this case, the transformation takes the form

W=z4a

which obviously corresponds to displacing the whole Plane by the vector B,

On the other hand, if o # 1 (and o # 0), the transformation (8.6) can be |

written in the form ~
W— 24 = oz ~ z),

where z, is determined From the equation®
]

Zg = azy + B,

Then it. is immediately clear that the transformation (8.6) is equiifalcht tc;
a rotation of the whole plane through the angle Argo about the point

5 - * . . * i ,
Obvxously,- Zo 18 Ivariant under the transformation (8.6), i.e., zy is afixed point of
the transformation, If « # 0, the point at infinity is also a fixed point (see See, 46).‘

t

[~

" an’angle equal to
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2o = Bf(l — «), together with a uniform magnification by the factor le|
relative to the point z,. This magnification is sometimes called a homothetic
transfortnation (or transformation of similitude) with ray center z, and ray
ratio o], .

Next suppose that ¢ # 0 in (8.4). Then the derivative

ad — be  ad - be |

Lz =

(cz+d)F & (z— 5
ex_ists, if £ % 8§, where § = ~dfe. If the determinant
- a b
ad — bc = '
c d

vanishes, then its rows are proportional,® i.e.,

g—_—-%:y. of a=pe, b= pud

where p is a constant, so that (8.5) reduces to the trivial transformation

Z d
L(z)__az-l—b_p.c +

Cez+d eztd ™

it ad — be 5 0, then L'(z2) # Ofor_a]l:_z._:# 8, and hence the mapping w = L(z)
is cpnformal at ail finite points except possibly at z = §. Under the mapping,
the tangenis to-curves passing through any point z 5 § are rotated through

ad;bc_—-?_Arg(z— 8,

AIg L(Z) = Arg

while the zﬁagniﬁcatiou at z equals

poaroad =be 1
L@ = =~ =3
The angle through which fangents are rotated has the same value for all
points with equal values of Arg (z —8), Le., along any ray drawn from 8§,
btit-otherwise varies’from point to point: Similarly, in general the magnifica~
tion varies with z; but it has the same value for all points with equal values of
|z — 3§, ie., along any circle with center 8. In particular, the magnification

- 1s equal to 1 at every point of the circle C with equation

lz — 8 = L Ve = 5e]

lel
. © Bee e.g., G. E. Shilov, op. cit,, p. 25,
o .
i R
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+(%0), and mapg the Point at infinjty jnto the finite point 4. vy,
ithat the MADPINg is conforma) 2t these points too, First let

I = ©,  L{co) = 4.

Thus the function y = Lz maps the finjte point § into the point at infinity

€ now show

two curyeg forming ap angle 6 witp jtg vertex at the point 8, and Jet Iy ang
Ty be their images in the W-plane, To brove that ', apg T, form an angle §
With its vertex at infinity, we subject the W-plane to. the transformatiop

1

7N o=

w

' Then the curveg I, and Ty go into two curvesg I'¥ and T}, and the point at
. infinity £oes into the origin of coordinates (see Figure 8.2). Obviously, we

can go from v, and Y2 In the z-plane to I'¥ and T¥ in the 7

-plane by making
the M&biys transformation

. SEC. 34 INTERPRETATION op THE DERIVATIVE, CONFORMAL Marpmng 125

to the definition gi\;en in See, 25, the curves I, and I’z also form an angle §
with its vertex at infinity,” This broves that the mapping w = L(z) is conforma]
at the point 7 = §,

and v¥ under the t
the origin. But we can

__;az-i-b__af-i—ﬁ:a-i-b?;’
whcz—[—d_c"l_]_d ¢+ dt
4

Wwhich is conforma] at the point £ = 0, follows that I, ang Ty form the
Same angle 6 at the point 4 afc. This proves that the mapping 1 Lz)
is conformal at . The situatiop can be summarizeq by saying that the

ransformation w = Lz) is a conformal mapping of the extended plane onry
itself,

function J2) is said to pe analytic at 7 = o iy the function SHO = JU
=0, In DParticular, ir J(z) is analytic at - — 0, the limit
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where it should be noted that in general

Fie) # Tim £'(z)

(see Problem 8.10). Then, by the argument given above for the speciél case

of the Mébius transformation, it is easy to sce that the mapping w = £(z) is

conformal at oo if f'(o0) % 0. With this approach, the conformality at o
of the Mobius transformation ‘

az - b
Le)= o= (ad—be#0, c+0) : |
follows from the fact that o

ad-: be £ 0,
prc

L'(e0) = ~

Remark 2. Similarly, if
lim f(z) = o,
but if e

=1
"= 1

is finialytic al z = g, with derivative ¢’(@) # 0, then, fust as id the case of the
Mbbins transformation, the mapping w = f(z) is conformal at z = 4. )

PROBLEMS

8.1. With the same notation as on p. 118, a curve Lis said to'Wave a left-hand

tangent (of inclination 6) at the point zo = A(Zo) if the limit (8.2) exists; subject to

the extra condition that every point of the sequence {1,} converging to ¢, be.Jess
than to. The right-hand tangent is defined similarly by requiring that 2, > ¢, for
every i, Give an example of a {continuous) curve / which has aleft-hand tangent
but no right-hand tangent (and hence no tangent) at a point zee !,

8.2. Verify that the function
Filz) == r}cos ® + isin @) = rz
used in Example 2, p. 121 is differentiable at z = 0.

8.3. Find the angle through which a curve drawn from the poiﬁt Zp is rotated
under the mapping w = 22 if ‘ ’

D zo=i D)zo=~} Jzo=1-+4 d) z0= —3 4 4i,
Also find the corresponding values of the magnification.

8.4. Carry out the same calculations as in the preceding problem, this time
applied to the function w e 25,
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. 8.5. Which part of the plane is shrunk and which part stretched under the
following mappings: '

) w=2z% b w=z2+2z;if:)w=%?

8.6. Asshown onpp, 122-123, the entire linear transformation w = wz + B is
‘equii.raient to a rotation and a magnification relative to the fixed point
zp = B{{1 — &), provided that « 0, Find the rotation, magnification and
(finite) fixed point, if such exists, corresponding to each of the following
transformations, and write each in the canonical form w — z, = oz — zg):
a) w=12z + 1 —.3i; b) w=-iz + 4;
e w=z 41— 2 Hw—-w=alz—z) (a0
- %

8.7. Find the entire linear transformation with fixed point 1 -+ 21 carrying
the point / into the point ~i.

Ans. w= 2+ Hz + 1 — 3i,

8.8. Find the entire linear transformation carrying the triangle with vertices
at the points 0, 1, / into the similar triangle with vertices at the points 0, 2, 1 + 1.

8.9. Prove that the transformation L(z) = «z + @ is conformal at infinity
ife s 0 ’

8.10. Prove that if f(z) is analytic at infinity, then
o lim f(z) = 0.

o ramt s
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