8

GEOMETRIC INTERPRETATION OF THE DERIVATIVE. CONFORMAL MAPPING

31. Geometric Interpretation of $\operatorname{Arg} f'(z)$

Let l be a continuous curve with equation $z = \lambda(t)$, $t \in [a, b]$, and suppose $\lambda(t)$ is differentiable at a point $t_0 \in [a, b]$ (relative to the set [a, b]). Let $\{t_n\}$ be an arbitrary sequence of points in [a, b] converging to t_0 ($t_n \neq t_0$), and consider the difference quotient

$$r_{n} = \frac{\lambda(t_{n}) - \lambda(t_{0})}{t_{n} - t_{0}}$$
 (8.1)

Obviously $r_n \to r_0 = \lambda'(t_0)$ as $n \to \infty$.

DEFINITION. The curve l is said to have a tangent at the point $z_0 = \lambda(t_0)$ if the limit

$$\theta = \lim_{n \to \infty} \operatorname{Arg} r_n \tag{8.2}$$

exists, and then the tangent is said to have inclination θ . Geometrically, the tangent to l at z_0 is represented by the ray τ emanating from z_0 which makes the angle θ with the positive real axis.

Remark 1. Clearly, if $\lambda'(t_0) \neq 0$, l has a tangent at z_0 , since

SEC. 31

$$\theta = \lim_{n \to \infty} \operatorname{Arg} r_n = \operatorname{Arg} r_0 = \operatorname{Arg} \lambda'(t_0)$$

(see p. 35), and then the inclination of the tangent is just the argument of the complex number $\lambda'(t_0)$. On the other hand, if $\lambda'(t_0) = 0$, l may or may not have a tangent at z_0 , since the fact that $r_n \to 0$ implies only that $|r_n| \to 0$ and says nothing about the behavior of $\operatorname{Arg} r_n$ (see p. 33). However, if l has a tangent at z_0 , then $\lambda(t_n) \neq \lambda(t_0)$ for all t_n sufficiently close to t_0 , since $\operatorname{Arg} 0$ is meaningless.²

Remark 2. As we have defined it, the tangent is a ray, not a vector. If $\lambda'(t_0) \neq 0$, we can also introduce a tangent vector to l at z_0 , defined as the vector of length $|\lambda'(t_0)|$ which makes the angle θ with the positive real axis.

THEOREM 8.1. Let G be a domain, and let f(z) be a continuous function of a complex variable defined on G. Suppose f(z) has a nonzero derivative $f'(z_0)$ at a point $z_0 \in G$, and let l be a curve which passes through z_0 and has a tangent τ at z_0 . Then w = f(z) maps l into a curve L in the w-plane which passes through the point $w_0 = f(z_0)$ and has a tangent T at w_0 . Moreover, the inclination of T exceeds the inclination of τ by the angle $\operatorname{Arg} f'(z_0)$.

Proof. Suppose l has the equation $z = \lambda(t)$, $t \in [a, b]$, and let $z_0 = \lambda(t_0)$. By hypothesis,

$$\theta = \lim_{n \to \infty} \operatorname{Arg} r_n$$

exists, where r_n is given by (8.1). The function w = f(z) maps l into a curve L in the w-plane with equation

$$w = f[\lambda(t)] = \Lambda(t), \qquad t \in [a, b], \tag{8.3}$$

where $w_0 = f(z_0) = \Lambda(t_0)$. Let $\{t_n\}$ be an arbitrary sequence of points in [a, b] converging to t_0 , and let

$$R_n = \frac{\Lambda(t_n) - \Lambda(t_0)}{t_n - t_0}.$$

Then the tangent to L at w_0 has inclination.

$$\Theta = \lim_{n \to \infty} \operatorname{Arg} R_n,$$

provided this limit exists. Clearly we have

$$R_n = \frac{\Lambda(t_n) - \Lambda(t_0)}{\lambda(t_n) - \lambda(t_0)} \frac{\lambda(t_n) - \lambda(t_0)}{t_n - t_0},$$

¹ Formula (8.2) means that given any $\varepsilon > 0$, there is an integer $N(\varepsilon) > 0$ and a sequence $\{\theta_n\}$, where each θ_n is a value of Arg r_n , such that $|\theta_n - \theta| < \varepsilon$ for all $n > N(\varepsilon)$. Clearly, θ is only defined to within a multiple of 2π . The angle θ will always be measured from the positive real axis to the tangent τ (in the counterclockwise direction for a positive value of θ).

² This condition is automatically satisfied if $\lambda'(t_0) \neq 0$, since otherwise $r_n = 0$ for t arbitrarily close to t_0 , which implies that $\lambda'(t_0) = 0$, contrary to hypothesis.

where the first factor in the right-hand side is well defined, since $\lambda(t) \neq \lambda(t_0)$ CHAP, 8 for all t_n sufficiently close to t_0 (*l* is assumed to have a tangent at z_0).

$$\Theta = \lim_{n \to \infty} \operatorname{Arg} R_n = \lim_{n \to \infty} \operatorname{Arg} \frac{\Lambda(t_n) - \Lambda(t_0)}{\lambda(t_n) - \lambda(t_0)} \frac{\lambda(t_n) - \lambda(t_0)}{t_n - t_0}$$

$$= \lim_{n \to \infty} \operatorname{Arg} \frac{w_n - w_0}{z_n - z_0} r_n = \lim_{n \to \infty} \operatorname{Arg} \frac{w_n - w_0}{z_n - z_0} + \lim_{n \to \infty} \operatorname{Arg} r_n \qquad (8.4)$$

$$= \operatorname{Arg} \lim_{n \to \infty} \frac{w_n - w_0}{z_n - z_0} + \theta = \operatorname{Arg} f'(z_0) + \theta,$$

where $w_n = \Lambda(t_n)$, $z_n = \lambda(t_n)$ and θ is the inclination of τ at z_0 . It follows from (8.4) that Θ exists and that

$$\Theta - \theta = \operatorname{Arg} f'(z_0),$$

as asserted. We note that things are particularly simple in the case where $\lambda'(t_0) \neq 0$, since then

$$\Theta = \operatorname{Arg} \Lambda'(t_0) = \operatorname{Arg} \left[f'(z_0) \lambda'(t_0) \right]
= \operatorname{Arg} f'(z_0) + \operatorname{Arg} \lambda'(t_0) = \operatorname{Arg} f'(z_0) + \theta,$$

by the rule for differentiating the composite function (8.3).

Now let l_1 and l_2 be two curves with a common initial point z_0 , which have tangents τ_1 and τ_2 at z_0 , and suppose the angle between τ_1 and τ_2 is measured from τ_1 to τ_2 . Suppose l_1 and l_2 have images L_1 and L_2 under f(z). Then, according to Theorem 8.1, if $f'(z_0) \neq 0$, L_1 and L_2 have tangents T_1 and T_2 at the point $w_0 = f(z_0)$, where T_1 and T_2 are obtained by rotating au_1 and au_2 through the same angle $\operatorname{Arg} f'(z_0)$. Therefore the angle between L_1 and L_2 equals the angle between l_1 and l_2 , and is measured in the same direction, i.e., from L_1 to L_2 . In other words, a continuous function w = f(z)with a nonzero derivative $f'(z_0)$ maps all curves in the z-plane which pass through z_0 and have tangents at z_0 into curves in the w-plane which pass through $w_0 = f(z_0)$ and have tangents at w_0 , and moreover, the mapping preserves angles between curves. A mapping by a continuous function which preserves angles between curves passing through a given point z_0 is said to be conformal at z_0 (cf. p. 88). If a conformal mapping preserves the directions in which angles are measured (as well as their magnitudes), it is called a conformal mapping of the first kind, but if it reverses the directions in which angles are measured, it is called a conformal mapping of the second kind. If a mapping is conformal at all points of a domain G, it is said to be conformal on G. Thus Theorem 8.1 has the following consequence:

THEOREM 8.2. Let G be a domain, and let f(z) be an analytic function on G. Then f(z) is a conformal mapping of the first kind at every point of

Example 1. Reflection in the real axis, i.e., the transformation $w = \bar{z}$, is a conformal mapping of the second kind. A more general example is the

$$w = \overline{f(z)}$$

of an analytic function f(z), where $f'(z) \neq 0$.

Example 2. At a point where the derivative vanishes, angles may or may not be preserved, as can be seen by comparing the mappings

$$f_1(z) = r^2(\cos \Phi + i \sin \Phi) = rz,$$

 $f_2(z) = r^2(\cos 2\Phi + i \sin 2\Phi) = z^2$

at the point z = 0.

32. Geometric Interpretation of |f'(z)|

As we have just seen, $\operatorname{Arg} f'(z_0)$ represents the rotation undergone by the tangent to a curve l at the point $z_0 \in l$ when transforming to the new curve L = f(l) and the new point $w_0 = f(z_0)$. In particular, if $f'(z_0)$ is a positive real number, the tangents to l at z_0 and to L at w_0 are parallel and point in

To explain the geometric meaning of the quantity $|f'(z_0)|$, i.e., the absolute value of the derivative at z_0 , we note that

$$|f'(z_0)| = \lim_{z \to z_0} \frac{|f(z) - f(z_0)|}{|z - z_0|}.$$

The numbers $|z-z_0|$ and $|f(z)-f(z_0)|$ are the distance between the points z and z_0 in the z-plane, and the distance between their images f(z) and $f(z_0)$ in the w-plane, respectively. Thus, interpreting

$$\frac{|f(z) - f(z_0)|}{|z - z_0|}$$

as the linear magnification ratio (or simply the magnification) of the vector $z-z_0$ under the mapping w=f(z), we can regard $|f'(z_0)|$ as the magnification at the point z_0 under w = f(z).

³ In reversing the order of the operations Arg and $\lim_{n\to\infty}$, we have used the fact that $f'(z_0) \neq 0$.

⁴ Here the word magnification is used in a general sense, and can correspond to stretching if $|f'(z_0)| > 1$ or shrinking if $|f'(z_0)| < 1$ [or neither if $|f'(z_0)| = 1$].

Remark. The size of the magnification at the point z_0 does not depend on the choice of the finite vector $z - z_0$ drawn from z_0 , since $|f'(z_0)|$ is not the actual magnification of any such vector, but rather the limiting magnification as $z \rightarrow z_0$.

33. The Mapping
$$w = \frac{az + b}{cz + d}$$

To illustrate the above considerations, we now examine the fractional linear transformation or Möbius transformation

$$L(z) = \frac{az+b}{cz+d},\tag{8.5}$$

where a, b, c, d are arbitrary complex numbers (except that c and d are not both zero). First suppose that c = 0. Then L(z) reduces to

$$L(z) = \alpha z + \beta \qquad (\alpha = a/d, \quad \beta = b/d), \tag{8.6}$$

and is sometimes called the entire linear transformation. The transformation (8.6) is defined for all values of z, and if $\alpha \neq 0$, its derivative L'(z) is a nonzero constant, so that (8.6) is a conformal mapping of the whole z-plane. Under this transformation, the tangents to all curves in the z-plane are rotated through the same angle, equal to $\operatorname{Arg} \alpha$, and the magnification at every point equals $|\alpha|$. If $\alpha = 1$, then

$$\operatorname{Arg} \alpha = 2k\pi, \qquad |\alpha| = 1,$$

where k is an integer, and then both the rotation and expansion produce no effect. In this case, the transformation takes the form

$$w = z + \beta$$
,

which obviously corresponds to displacing the whole plane by the vector β . On the other hand, if $\alpha \neq 1$ (and $\alpha \neq 0$), the transformation (8.6) can be

$$w-z_0=\alpha(z-z_0),$$

where z_0 is determined from the equation⁵

$$z_0 = \alpha z_0 + \beta.$$

Then it is immediately clear that the transformation (8.6) is equivalent to a rotation of the whole plane through the angle $\operatorname{Arg} \alpha$ about the point $z_0 = \beta/(1-\alpha)$, together with a uniform magnification by the factor $|\alpha|$ relative to the point z_0 . This magnification is sometimes called a homothetic transformation (or transformation of similitude) with ray center z_0 and ray ratio $|\alpha|$.

Next suppose that $c \neq 0$ in (8.4). Then the derivative

$$L'(z) = \frac{ad - bc}{(cz + d)^2} = \frac{ad - bc}{c^2} \frac{1}{(z - \delta)^2}$$

exists, if $z \neq \delta$, where $\delta = -d/c$. If the determinant

$$ad - bc = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

vanishes, then its rows are proportional,6 i.e.,

SEC. 33

$$\frac{a}{c} = \frac{b}{d} = \mu$$
 or $a = \mu c$, $b = \mu d$,

where μ is a constant, so that (8.5) reduces to the trivial transformation

$$L(z) = \frac{az+b}{cz+d} = \frac{\mu cz + \mu d}{cz+d} = \mu.$$

If $ad - bc \neq 0$, then $L'(z) \neq 0$ for all $z \neq \delta$, and hence the mapping w = L(z)is conformal at all finite points except possibly at $z = \delta$. Under the mapping, the tangents to curves passing through any point $z \neq \delta$ are rotated through an angle equal to

$$\operatorname{Arg} L'(z) = \operatorname{Arg} \frac{ad - bc}{c^2} - 2 \operatorname{Arg} (z - \delta),$$

while the magnification at z equals

$$|L'(z)| = \frac{ad - bc}{c^2} \frac{1}{|z - \delta|^2}$$

The angle through which tangents are rotated has the same value for all points with equal values of Arg $(z-\delta)$, i.e., along any ray drawn from δ , but otherwise varies from point to point. Similarly, in general the magnification varies with z, but it has the same value for all points with equal values of $|z-\delta|$, i.e., along any circle with center δ . In particular, the magnification is equal to 1 at every point of the circle C with equation

$$|z - \delta| = \frac{1}{|c|} \sqrt{|ad - bc|}$$

⁵ Obviously, z_0 is invariant under the transformation (8.6), i.e., z_0 is a fixed point of the transformation. If $\alpha \neq 0$, the point at infinity is also a fixed point (see Sec. 46).

See e.g., G. E. Shilov, op. cit., p. 25.

(called the isometric circle of the Möbius transformation), is greater than 1 inside C (approaching ∞ as $z \to \delta$), and is less than 1 outside C (approaching 0 as $z \to \infty$). The situation is shown schematically in Figure 8.1.

FIGURE 8.1

34. Conformal Mapping of the Extended Plane

As in the preceding section, let $c \neq 0$ and $ad - bc \neq 0$. Then it is clear that

$$\lim_{z \to \delta} \frac{az + b}{cz + d} = \infty, \qquad \lim_{z \to \infty} \frac{az + b}{cz + d} = \frac{a}{c} = A,$$

and hence

$$L(\delta) = \infty, \quad L(\infty) = A.$$

Thus the function w = L(z) maps the finite point δ into the point at infinity (∞) , and maps the point at infinity into the finite point A. We now show that the mapping is conformal at these points too. First let γ_1 and γ_2 be two curves forming an angle θ with its vertex at the point δ , and let Γ_1 and Γ_2 be their images in the w-plane. To prove that Γ_1 and Γ_2 form an angle θ with its vertex at infinity, we subject the w-plane to the transformation

$$\eta = \frac{1}{w}$$

Then the curves Γ_1 and Γ_2 go into two curves Γ_1^* and Γ_2^* , and the point at infinity goes into the origin of coordinates (see Figure 8.2). Obviously, we can go from γ_1 and γ_2 in the z-plane to Γ_1^* and Γ_2^* in the η -plane by making

$$\eta = \frac{1}{w} = \frac{cz + d}{az + b},$$

which is conformal at the point $z = \delta = -d/c$. It follows that the curves Γ_1^* and Γ_2^* form an angle θ with its vertex at the origin. Therefore, according

SEC. 34 INTERPRETATION OF THE DERIVATIVE. CONFORMAL MAPPING

to the definition given in Sec. 25, the curves Γ_1 and Γ_2 also form an angle θ with its vertex at infinity. This proves that the mapping w = L(z) is conformal at the point $z = \delta$.

The fact that w = L(z) is conformal at ∞ is proved similarly. In fact, if the curves γ_1 and γ_2 go through the point at infinity in the z-plane, their images Γ_1 and Γ_2 in the w-plane go through the point A. Suppose γ_1 and γ_2 form an angle θ with its vertex at infinity. This means that their images γ_1^*

. FIGURE 8.2

and γ_2^* under the transformation $\zeta=1/z$ form an angle θ with its vertex at the origin. But we can obviously go from γ_1^* and γ_2^* to Γ_1 and Γ_2 by making

$$w = \frac{az + b}{cz + d} = \frac{a\frac{1}{\xi} + b}{c\frac{1}{\xi} + d} = \frac{a + b\zeta}{c + d\zeta}$$

which is conformal at the point $\zeta=0$. It follows that Γ_1 and Γ_2 form the same angle θ at the point A = a/c. This proves that the mapping w = L(z)is conformal at ∞ . The situation can be summarized by saying that the transformation w = L(z) is a conformal mapping of the extended plane onto

Remark 1. These considerations suggest the following definition: A function f(z) is said to be analytic at $z = \infty$ if the function $f^*(\zeta) = f(1/\zeta)$ is analytic at $\zeta = 0$. In particular, if f(z) is analytic at $z = \infty$, the limit

$$\lim_{z \to \infty} f(z) = \lim_{\zeta \to 0} f^*(\zeta) = f(\infty)$$

always exists and is finite. We define the derivative of f(z) at $z = \infty$ to be

$$f'(\infty) \neq \lim_{z \to \infty} f'(z)$$

(see Problem 8.10). Then, by the argument given above for the special case of the Möbius transformation, it is easy to see that the mapping w = f(z) is conformal at ∞ if $f'(\infty) \neq 0$. With this approach, the conformality at ∞ of the Möbius transformation

$$L(z) = \frac{az+b}{cz+d} \qquad (ad-bc \neq 0, \quad c \neq 0)$$

follows from the fact that

$$L'(\infty) = -\frac{ad - bc}{c^2} \neq 0.$$

Remark 2. Similarly, if

$$\lim_{z\to z} f(z) = \infty,$$

but if

$$\varphi(z) = \frac{1}{f(z)}$$

is analytic at z=a, with derivative $\varphi'(a)\neq 0$, then, just as in the case of the Möbius transformation, the mapping w=f(z) is conformal at z=a.

PROBLEMS

- 8.1. With the same notation as on p. 118, a curve l is said to have a left-hand tangent (of inclination 0) at the point $z_0 = \lambda(t_0)$ if the limit (8.2) exists; subject to the extra condition that every point of the sequence $\{t_n\}$ converging to t_0 be less than t_0 . The right-hand tangent is defined similarly by requiring that $t_n > t_0$ for every n. Give an example of a (continuous) curve l which has a left-hand tangent but no right-hand tangent (and hence no tangent) at a point $z_0 \in l$.
- 8.2. Verify that the function

$$f_1(z) = r^2(\cos \Phi + i \sin \Phi) = rz$$

used in Example 2, p. 121 is differentiable at z = 0.

8.3. Find the angle through which a curve drawn from the point z_0 is rotated under the mapping $w=z^2$ if

a)
$$z_0 = i$$
; b) $z_0 = -\frac{1}{4}$; c) $z_0 = 1 + i$; d) $z_0 = -3 + 4i$.

Also find the corresponding values of the magnification.

8.4. Carry out the same calculations as in the preceding problem, this time applied to the function $w = z^3$.

PROBLEMS INTERPRETATION OF THE DERIVATIVE. CONFORMAL MAPPING

8.5. Which part of the plane is shrunk and which part stretched under the following mappings:

a)
$$w = z^2$$
; b) $w = z^2 + 2z$; c) $w = \frac{1}{z}$?

8.6. As shown on pp. 122-123, the entire linear transformation $w = \alpha z + \beta$ is equivalent to a rotation and a magnification relative to the fixed point $z_0 = \beta/(1-\alpha)$, provided that $\alpha \neq 0$. Find the rotation, magnification and (finite) fixed point, if such exists, corresponding to each of the following transformations, and write each in the canonical form $w - z_0 = \alpha(z - z_0)$:

a)
$$w = 2z + 1 - 3i$$
; b) $w = iz + 4$;

c)
$$w = z + 1 - 2i$$
; d) $w - w_1 = a(z - z_1)$ $(a \neq 0)$.

8.7. Find the entire linear transformation with fixed point 1 + 2i carrying the point i into the point -i.

Ans.
$$w = (2 + i)z + 1 - 3i$$
.

- 8.8. Find the entire linear transformation carrying the triangle with vertices at the points 0, 1, i into the similar triangle with vertices at the points 0, 2, 1 + i.
- 8.9. Prove that the transformation $L(z) = \alpha z + \beta$ is conformal at infinity if $\alpha \neq 0$.
- 8.10. Prove that if f(z) is analytic at infinity, then

$$\lim_{z \to \infty} f'(z) = 0$$