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To summarize, there is an asymptotically stable equilibrium at p* = %
unless the genotypes AA have a selective advantage of a factor e? ~ 55 over
the heterozygotes Aa, and of €8 =~ 3000 over the homozygotes aa (i.e., 8 > 4).
In the latter case, when the frequency-dependent selective forces are so strong
(8 > 4), we obtain an (asymptotically) stable 2-cycle.

REMARK 1.3  In [34], it was shown that for 0 < B # 4, the equilibrium
point py = % is in fact globally asymptotically stable on the interval (0, I).

T P S O
Exercises - (1.9)
I. Show that SF (%) < 0, where F is the map defined by

pgﬂ(lwi’-f?)

FO) = o

2. Let G(x) = xexplBU52], B > 4, x € (0,00). Let (%), %) be a
2-cycle of G. Show that this 2-cycle is asymptotically stable.

7S\

Chapter 2

Sharkovsky’s Theorem and Bifurcation

Period three implies chaos.

Li and Yorke

2.1 The Mystery of Period 3

In 1975, Li and Yorke [39] published the article, “Period three implies chaos™
in the American Mathematical Monthly. In this paper, they proved thatif a con-
tinuous map f has a point of period 3, then it must have points of any period k.
Soon afterward, it was found that Li~Yorke’s theorem is only a special case of a
remarkable theorem published in 1964 by the Ukranian mathematician Alexan-
der Nikolaevich Sharkovsky [61]. Sharkovsky introduced a new ordering > of
the positive integers in which 3 appears first. He proved that if & > » and f has
a k-periodic point, then it must have an r-periodic point. This clearly implies
Li—Yorke’s theorem. However, to their credit, Li and Yorke were the first to
coin the word “chaos” and introduce it to mathematics.

Itis worth mentioning that neither Li-Yorke’s theorem nor Sharkovsky’s the-
orem is intuitive. To illustrate this point, recall from Example 1.10 that the tent
map F'{(x) = 1—-2|x — —é—i has two cycles of perfod 3 : {%, ‘%-, g} and {%, %, %}.

Isitintuitively clear that the tent map has cycles of all periods? I do not think
0.

Letus now turn our attention to Sharkovsky’s ordering of the positive integers,
Thic arderine ic dafinad ac fallare:
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3pSeib... 2x3p2xS5p2xT...
odd integers 2x odd integers
2Z2x3022x5022xTp... 2 x3p2 x50 xTD>...
22x odd integers 2"x odd integers

......... B2 P22
powers of 2,

We first list all the odd integers except 1, then 2 times the odd integers, 22
times the odd integers, and, in general, 2" times the odd integers foralln € Z*.
This is followed by powers of 2 in a descending order. It is easy to see that this
ordering exhausts all of the positive integers. Notice that m > n signifies that
m appears before n in the Sharkovsky’s ordering.

THEOREM 2.1
(Sharkovsky’s Theorem). Let f : I — [ be a continuous map on the interval
1, where I may be finite, infinite, or the whole real line. -

If f has a periodic point of period k, then it has a periodic point of period r

forallr withk > r.

PROOF  See the Appendix at the end of this chapter. Proof of the theorem
may also be found in Block and Coppel [7].

We will now make a few comments about the theorem and then give a proof
of a consequence of it: the Li-Yorke theorem.

I. The only way that a continuous map f has finitely many periodic points
is if f has only pertods that are powers of 2. Otherwise, it has infinitely
many periodic points. For example, if f has a periodic point of period
210 ¢ 5, then it has infinitely many periodic points of periods

210 505 210 57 210 g 2l w3 2l 5 21l 57
Loan =l 92 .

2. I m > n, then there are continuous maps with pertodic points of period
r but not of period m (see the proot of Theorem 2.3).

3. Sharkovsky’s theorem does not extend to two or higher dimensional Eu-
clidean spaces. It is not even true for the unit circle S'. For example,

the map f : §' - S! defined by f(¢'?) = O+ i of period 3 at all
points in S1, but f has no other periods.
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Now we go back and prove the Li-Yorke theorem.

THEOREM 2.2
(Li and Yorke). Let f : I — I be a continuous map on an interval I. If

there is a periodic point in I of period 3, then for everyk = 1,2, .. . thereis a
periodic point in I having period k.

To prove this theorem, we need some preliminary results.

LEMMA 2.1

Let f : I — R be continuous, where I is an interval. For any closed interval
J C ), there is a closed interval Q C I such that f(Q) =

PROOF  LetJ = [f(p), f(g)], where p,q € I. If p < g, let r be the
largest number in [p, g] with f{r} = f(p) and let s be the smallest number
in [p, q] such that f(s) = fg)yands > r. We claim that f(r,s]) =

We observe that by the intermediate value theorem,! we have f([r,s]) D J.
Assume that there exists ¢ with r < ¢ < s such that £(t) ¢ J. Without loss of
generality, suppose that £(t) > f{g). Applying the intermediate value theorem
again yields f([r,t]) D J. Hence, there is x € [r, 1) such that f(x) = f(g),
which contradicts our assumption that s is the smallest number in {p, g] with
f(p) = f(g). The case where p > g is similar. The proof is now complete.

LEMMA 2.2

Let f : I — I be continuous and let {I,,)72, be a sequence of closed and
bounded intervals with I, C I and Iy C F(5) for all n € ZF. Then, there
is a sequence of closed and bounded intervals Q, such that Qpp1 C @y C Iy
and f*(Qy) = I, forn € Z*.

PROOF  Define Q¢ = Iy. Then, f%(Qp) = Iy. If Q,_; has been defined
so that f“_l(Qn—l) = Iy—y, then I, © f(I,—1) = f*(Qu—1). By applying
Lemma 2.1 on f", there is a closed bounded interval @, C @,..; such that

f"(Qu) = I,. !

5T f is continuous on [a, b] and N is any number between f(a) and f(5), then there is at least
one ¢ between a and & such that f(c) =
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We are now well prepared to give the proof of Theorem 2.2.

Proof of Theorem 2.2 Suppose that f has a3-cycle {x, f(x), F2(x)}. Then
one may rename the elements of the cycle so that it will become {a,b =
Fla),c = f(b}} witheithera < b < cora > b > ¢. For example, if
x < fi2x) < f(x), weleta = FGx).b = f(@),c = f2a) and thus we
havea > b > c. Letus assume thata < b < ¢. Write J = [a, b], L =
[b, ¢]. For any positive integer £ > 1, let {I,} be a sequence of intervals with
Ly = Lforn =0,1,...,k —2and I;_; = J, and define I, to be periodic
inductively, fyyg = I, forn € Z*. The sequence {1} looks like

L,L,....L,J,L,L,....,L,J,LL,....,L,J,...
(k— 1) times (k — 1) times (k — 1) times.

Ifk=1letl, = Lforalln € Z*. Since f(a) = b, JFB) = ¢, and
f(c) = a, it follows by the intermediate value theorem that L, J C f(L)} and
L C f(J) (see Fig. 2.1}.

c c
L

b b
J .

a a

FIGURE 2.1
fl@y=Db fb)=c, f(t)=a.Hence J C f(L)and L C f(J).

Hence, one may apply Lemma 2.2 to produce a sequence {(Q,} of cldsed,
bounded intervals with Qg C Qg = L and *(0y) = It = L. Consequently,

L c f%L). By applying Theorem 1.1 to £*, we conclude that ¥ has a fixed
point in L and, consequently, f has a k-periodic pointin I.
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2.2 Converse of Sharkovsky’s Theorem

The question that we are going to address in this section is the following:
given any positive integers k and r with & [> r, is there a continuous map that
has a point of period r but no points of period £? The answer to this question is
a definite yes. Here we give a simple proof of this result which is based on our
paper [21].

THEOREM 2.3

(A Converse of Sharkovsky’s Theorem). For any positive integer r, there
exists a continuous map fr : I, — I on the closed interval I, such that f;
has a point of prime period r but no points of prime periods s, for all positive
integers s that precede r in the Sharkovsky's ordering, L.e, s> ... > r.

PROOF  In order to accomplish the proof, we have three cases to contem-
plate,

1. Odd periods

2. Periods of the form 2 x odd positive integers
3. Periods of powers of 2, i.e., 2"

Case 1: Odd Periods.

(a) Letus construct a continucus map that has points of period 5 but no points
of period 3. Define amap f : {1, 5] — [1, 5] as follows:

f)=3,f@Q=5f@ =4 Ff@ =2 and f(5)=1.

On each interval [r,n + 1], 1 < n < 4, we assume f to be linear (see

Fig. 2.2).
Observe first that none of the points 1,2, 3, 4,5 is a 3-periodic point;
they all belong to the single 5-cycle: 1 —-f-; 3 —{> 4 if> 2 i; 5 -J-; 1. Note
also that

£, 2 = 12,5, £22, 3D = [3,5], and f3([4,5) =[1,4].

Hence, f 3 has no fixed points in the intervals 1, 2], [2, 3], and [4, 5]. The
situation with the interval [3, 4] is much more involved since f3([3,4]) =
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f

FIGURE 2.2
A map of period 5 but no points of period 3.

[1,5]. This implies by Theorem 1.1 that 3 must have a fixed point ¥
in the interval [3, 4]. We must show now that this fixed point of s
really a fixed point of f and thus is not of prime period 3. Observe that
f(x) € [2,4). So, if f(¥) € [2,3), then f2(X) € [4,5] and f3(¥) €
{1,2]. But, this is impossible since f3(x) = ¥ € [3, 4]. Therefore,
we conclude that f(¥) € {3,4]. Note that f2(%) € [2,4]. Again, if
FH(%) € 12,3), then f3(%) € [4, 5), yet another contradiction. Thus, the
orbit of ¥, {%, £(), £2(%¥)} is a subset of the interval {3,4).

Now, on the interval [3,4] F(x) = 10 — 2x has the unique fixed point

x* = 1. Moreover, on [3,4] f3(x) = 30 — 8x also has the unique fixed

point ¥ == -‘3(—} = x*, Hence, f has no points of prime period 3.

(b (?ne may generalize the above construction in order to manufacture con-
tinuous maps that have points of period 2n + 1 but no points of period
2n — 1. Details will be given in the problems (Problems 3, 4, and 5),

Case 2: Periods of the Form 2€(2n + 1).

(a) We begin by constructing a map that has points of period 2 x 5 but has
no points of period 2 x 3. Consider first the map £ : [1,5] — [1, 5] as
defined in Case 1(a). This map has points of period 5 but has no points
of period 3. We will use this map to construct a new map £, called the
double of £, as follows:

F (L 131 —=1[1,13),
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fxXY+81<x=<5

flx) =

x—8 9<x<13,

For5 < x < 9, weconnectthe pgints (5,9 and (9, 1) by aline (Fig. 2.3).
The proof that the double map f has a 10-cycle but no 6-cycle is left to
the reader as Problem 6.

)

FIGURE 2.3
A 10-cycle but no 6-cycles.

(b) The general procedure for constructing the double f of any map f :
(1,1 h] = 1,14 k] is as follows: f : [1,13h] — [1,1+ 3R],

where
Fle) -+ 2h; l<x<1+h

fl)=
x—2h 1+2h=x<143h
and f is linear for 1 +A < x < 142h. So, if we want to construct a map
with points of period 2(2n -+ 1) but no points of period 2(2n — 1), n =
3,4,5, ..., westart with amap f thathas points of period (Zn+1) but no
points of period (21 — 1). Then, its double map f will have the desired
properties (Problem 7).

Case 3: Periods of the Form 2".

(a) It is easy to construct a map that has points of period 20 = 1 (fixed
points) but no points of prime period 2L, Just pick any map f{(x) =
ax + b witha # 1. To construct a map that has points of period 2
but no points of period 22, we consider the map f (x) = —x -+ b. Then,
X = ‘% is a fixed point of f. However, Fix) = -(—x+Db)+b=x.
Thus, every point, with the exception of x* = —g, is of prime period 2.
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(b) To construct a map that has points of period 22 but no points of period 23,
we use the double map f of the map f(x} = —x + 3 (see Fig. 2.4). Map
doubling may be used repeatedly to construct maps with 2"-cycles but
no 2"t _gycles.

&)

FIGURE 2.4
A 4-cycle but no §-cycles.

Unresolved questions that remain to be settled are as follows:

1. Can we construct a continuous map that has points of period 2" x 3 but has
no points of any period of the form 2"~! x odd integer (see Problem 12)?

2. Can we construct a continuous map that has points of period 2% for all
i e Zt butno points of any other period [2] (see Problems 12 and 13)?

Exercises - (2.1 and 2.2)

1. Show that the piecewise linear map g : [1, 7] — [1, 71 shown in Fig. 2.5
has a 7-cycle but does not have a 5-cycle.

2. Mimic Problem 1 to construét a map that has a 9-cycle but not a 7-cycle,

3. Construct a map that has a (2k + 1)-cycle but has no (2k — I)-cycle for
any k > 3.

4. Consider the map f defined in Fig. 2.2 on the interval / = [1, 5]. Define
anew function f on J = [1, 13] (called the double of f) by compressing
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Fx)

FIGURE 2.5
A 7-cycle but no 5-cycles.

the graph of f into the upper left square. Explicitly, we let
fx)+8 fort <x <5

fo) =
x—8 for9 <x <13,
Then we connect the points (5, 9) and (9, 1) by a line. Show that the map

S (Fig. 2.3) has a 10-cycle but not a 6-cycle.
5. Mimic Problem 4 to produce a map with a 14-cycle but not a 10-cycle.
6. Construct a map that has a 2(2n 4+ 1)-cycle but no 2(2n — 1)-cycles.

7. Let f be a map defined on the interval I = [1, 1 4+ A]. Define F, “the
double of f,” on [1, I 4 3k] as follows: .

Fxy+2h forl <=x <1+4h

foy=
x—2h fort+2h<x<1-43h

and filling the rest of the graph as in Fig. 2.5. Prove that f has a 2n-
periodic point at x if and only if f has an n-periodic point at x. Show
that if £ has points of period 25(2n - 1), then f has points of period
26+ 20 +1).

8. Consiruct a map that has an 8-cycle but no 16-cycle.
9. Construct a map that has a 2%-cycle but no 2¢+!.cycle, for k > 3.

10. (a) Construct a continuous map that has a point of period 2 x 3 but no
points of odd periods.
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11.

12%,

13%,

14%*,

15.

16,

17%,
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(b) Describe the procedure of constructing a map of period 2" x 3 but
has no points of period 2"~ x odd integer.

For another construction of the double .map on the same interval: Let
I'=[0,1]and f : I — I be continuous. Define the double map f by

‘ 24+ Llr@ax for0<x <
F@y =12+ s —x) ford sx <2
x—2 for2 <x<l1.

Show that f hasa Zn-periodic pointat x if and only if f has an n- periodic
point at x.

Use Problem 11 o construct a continuous map that has fixed points of
period 2" for all n € Z™, but has no points of any other period.

(Hint: Start with f(x) = %on [0,1]. Let fi = f by its double map,
fa=Ffl,.... fu = fa—1. Define foo(x) = ’lirgoﬁ.(x). Show that foo
is continuous and has points of period 2" for all » and no other periods.)

Construct a continuous map that has points of period 2* for all n € Z+
but has no points of any other period.

Generalize the Li~Yorke theorem (Theorem 2.2) as follows: Let J be an
interval and let f : J — J be continuous. Assume there is apointa € J
for which the points b = f{a), ¢ = fz(a), and d = f3(a), satisfy d <
a<b<<c{d=a>bz>c) Provethatforevery k = 1,2, ... there is
a periodic point in J having period k.

Let f be a continuous map on the interval [a, b]. If there exists a point
xo € [a, b with f2(x0) < x0 < f{x0), or f(x0) < xp < f*(xp), prove
that f has a 2-cycle in [a, b].

Prove that a homeomorphism of R cannot have periodic points with prime
period greater than 2. Give an example of a homeomorphism that has a
point of prime period 2. -

(Li and Yorke) {39]. Under the assumption of Problem 14, show that
there is an nncountable set § C J, containing no periodic peints, which
satisfies the following conditions:
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(a) Forevery x, y € S with x 5% y,
. yi] _
i sup 17" (x) — F*(y)| > 0

and
lim inf |[F"(x) — F"(y}| =0.
H—=00

(b) For every y € S and periodic pointg & J,

. n _£u
Jim_ sup [F"(r) — ()] > 0.

2.3 Basin of Attraction

It is customary to call an asymptotically stable fixed point or a cycle an
attractor. This name makes sense because the orbits of all nearby points tend
to the attractor. The maximal set that is atiracted to an attractor M is called the
basin of attraction of M. Our analysis here applies to cycles of any period,
but for simplicity we will restrict our attention to attracting fixed points.

DEFINITION 2.1 Let x* be an asymptotically stable fixed point of a map
f. Then the basin of attraction (or the stable set) W¥(x*) of x* is defined
as the maximal interval J containing x* such that if x € J, then f'(x) —
x*asn — oo,

Observe that from the definition of an attractor, W* (x*) contains an open
interval around x*,

Example 2.1

1. The map f{(x) = x* has one attracting fixed point x* = 0. Its basin of
attraction W*(0) = (—1,1). Note that 1 is a fixed point and —1 is an
eventually fixed point that goes to 1 after the first iteration.

2. The logistic map F25(x) = 2.5x(1 — x) has one attracting fixed point
x* = 0.6 whose basin of attraction is W*(0.6) = (0, 1).

It is worth noting here that finding a basin of attraction of a fixed point is
in generat a difficult task. The most efficient method to determine the basin



