C G J

To summarize, there is an asymptotically stable equilibrium at $p^* = \frac{1}{2}$ unless the genotypes AA have a selective advantage of a factor $e^4 \approx 55$ over the heterozygotes Aa, and of $e^8 \approx 3000$ over the homozygotes aa (i.e., $\beta > 4$). In the latter case, when the frequency-dependent selective forces are so strong $(\beta > 4)$, we obtain an (asymptotically) stable 2-cycle.

REMARK 1.3 In [34], it was shown that for $0 < \beta \neq 4$, the equilibrium point $p_3^* = \frac{1}{2}$ is in fact globally asymptotically stable on the interval (0, 1).

Exercises - (1.9)

1. Show that $SF(\frac{1}{2}) < 0$, where F is the map defined by

$$F(p) = \frac{pe^{\beta(1-2p)}}{pe^{\beta(1-2p)} + 1 - p}.$$

2. Let $G(x) = x \exp[\beta \frac{(1-x)}{1+x}]$, $\beta > 4$, $x \in (0, \infty)$. Let $\{\overline{x}_1, \overline{x}_2\}$ be a 2-cycle of G. Show that this 2-cycle is asymptotically stable.

Chapter 2

Sharkovsky's Theorem and Bifurcation

Period three implies chaos.

Li and Yorke

2.1 The Mystery of Period 3

In 1975, Li and Yorke [39] published the article, "Period three implies chaos" in the American Mathematical Monthly. In this paper, they proved that if a continuous map f has a point of period 3, then it must have points of any period k. Soon afterward, it was found that Li-Yorke's theorem is only a special case of a remarkable theorem published in 1964 by the Ukranian mathematician Alexander Nikolaevich Sharkovsky [61]. Sharkovsky introduced a new ordering \triangleright of the positive integers in which 3 appears first. He proved that if $k \triangleright r$ and f has a k-periodic point, then it must have an r-periodic point. This clearly implies Li-Yorke's theorem. However, to their credit, Li and Yorke were the first to coin the word "chaos" and introduce it to mathematics.

It is worth mentioning that neither Li-Yorke's theorem nor Sharkovsky's theorem is intuitive. To illustrate this point, recall from Example 1.10 that the tent map $T(x) = 1 - 2|x - \frac{1}{2}|$ has two cycles of period $3: \{\frac{2}{7}, \frac{4}{7}, \frac{6}{7}\}$ and $\{\frac{2}{9}, \frac{4}{9}, \frac{8}{9}\}$.

Is it intuitively clear that the tent map has cycles of all periods? I do not think so.

Let us now turn our attention to Sharkovsky's ordering of the positive integers. This ordering is defined as follows:

$$3 \rhd 5 \rhd 7 \rhd \dots \\ \text{odd integers} \qquad 2 \times 3 \rhd 2 \times 5 \rhd 2 \times 7 \rhd \dots \\ 2 \times \text{odd integers} \qquad 2 \times 3 \rhd 2^2 \times 5 \rhd 2^2 \times 7 \rhd \dots \\ 2^2 \times 3 \rhd 2^2 \times 5 \rhd 2^2 \times 7 \rhd \dots \qquad 2^n \times 3 \rhd 2^n \times 5 \rhd 2^n \times 7 \rhd \dots \\ 2^2 \times \text{odd integers} \qquad 2^n \times \text{odd integers} \qquad \dots \rhd 2^n \rhd \dots \rhd 2^3 \rhd 2^2 \rhd 2 \rhd 1$$

We first list all the odd integers except 1, then 2 times the odd integers, 2^2 times the odd integers, and, in general, 2^n times the odd integers for all $n \in \mathbb{Z}^+$. This is followed by powers of 2 in a descending order. It is easy to see that this ordering exhausts all of the positive integers. Notice that $m \triangleright n$ signifies that m appears before n in the Sharkovsky's ordering.

THEOREM 2.1

(Sharkovsky's Theorem). Let $f: I \to I$ be a continuous map on the interval I, where I may be finite, infinite, or the whole real line.

If f has a periodic point of period k, then it has a periodic point of period r for all r with $k \triangleright r$.

PROOF See the Appendix at the end of this chapter. Proof of the theorem may also be found in Block and Coppel [7].

We will now make a few comments about the theorem and then give a proof of a consequence of it: the Li-Yorke theorem.

1. The only way that a continuous map f has finitely many periodic points is if f has only periods that are powers of 2. Otherwise, it has infinitely many periodic points. For example, if f has a periodic point of period $2^{10} \times 5$, then it has infinitely many periodic points of periods

$$2^{10} \times 5, 2^{10} \times 7, 2^{10} \times 9, \dots 2^{11} \times 3, 2^{11} \times 5, 2^{11} \times 7, \dots$$

 $\dots 2^{n}, 2^{n-1}, \dots, 2^{2}, 2, 1.$

- 2. If $m \triangleright n$, then there are continuous maps with periodic points of period n but not of period m (see the proof of Theorem 2.3).
- 3. Sharkovsky's theorem does not extend to two or higher dimensional Euclidean spaces. It is not even true for the unit circle S^1 . For example, the map $f: S^1 \to S^1$ defined by $f(e^{i\theta}) = e^{i(\theta + \frac{2\pi}{3})}$ is of period 3 at all points in S^1 , but f has no other periods.

Now we go back and prove the Li-Yorke theorem.

THEOREM 2.2

(Li and Yorke). Let $f: I \to I$ be a continuous map on an interval I. If there is a periodic point in I of period 3, then for every k = 1, 2, ... there is a periodic point in I having period k.

To prove this theorem, we need some preliminary results.

LEMMA 2.1

Let $f: I \to R$ be continuous, where I is an interval. For any closed interval $J \subset f(I)$, there is a closed interval $Q \subset I$ such that f(Q) = J.

PROOF Let J = [f(p), f(q)], where $p, q \in I$. If p < q, let r be the largest number in [p, q] with f(r) = f(p) and let s be the smallest number in [p, q] such that f(s) = f(q) and s > r. We claim that f([r, s]) = J. We observe that by the intermediate value theorem, we have $f([r, s]) \supset J$. Assume that there exists t with r < t < s such that $f(t) \notin J$. Without loss of generality, suppose that f(t) > f(q). Applying the intermediate value theorem again yields $f([r, t]) \supset J$. Hence, there is $x \in [r, t)$ such that f(x) = f(q), which contradicts our assumption that s is the smallest number in [p, q] with f(p) = f(q). The case where p > q is similar. The proof is now complete.

LEMMA 2.2

Let $f: I \to I$ be continuous and let $\{I_n\}_{n=0}^{\infty}$ be a sequence of closed and bounded intervals with $I_n \subset I$ and $I_{n+1} \subset f(I_n)$ for all $n \in \mathbb{Z}^+$. Then, there is a sequence of closed and bounded intervals Q_n such that $Q_{n+1} \subset Q_n \subset I_0$ and $f^n(Q_n) = I_n$ for $n \in \mathbb{Z}^+$.

PROOF Define $Q_0 = I_0$. Then, $f^0(Q_0) = I_0$. If Q_{n-1} has been defined so that $f^{n-1}(Q_{n-1}) = I_{n-1}$, then $I_n \subset f(I_{n-1}) = f^n(Q_{n-1})$. By applying Lemma 2.1 on f^n , there is a closed bounded interval $Q_n \subset Q_{n-1}$ such that $f^n(Q_n) = I_n$.

If f is continuous on [a, b] and N is any number between f(a) and f(b), then there is at least one c between a and b such that f(c) = N.

We are now well prepared to give the proof of Theorem 2.2.

Proof of Theorem 2.2 Suppose that f has a 3-cycle $\{x, f(x), f^2(x)\}$. Then one may rename the elements of the cycle so that it will become $\{a, b = f(a), c = f(b)\}$ with either a < b < c or a > b > c. For example, if $x < f^2(x) < f(x)$, we let a = f(x), b = f(a), $c = f^2(a)$ and thus we have a > b > c. Let us assume that a < b < c. Write J = [a, b], L = [b, c]. For any positive integer k > 1, let $\{I_n\}$ be a sequence of intervals with $I_n = L$ for $n = 0, 1, \ldots, k - 2$ and $I_{k-1} = J$, and define I_n to be periodic inductively, $I_{n+k} = I_n$ for $n \in \mathbb{Z}^+$. The sequence $\{I_n\}$ looks like

$$L, L, \ldots, L, J, L, L, \ldots, L, J, L, L, \ldots, L, J, \ldots$$

(k-1) times (k-1) times (k-1) times.

If k = 1, let $I_n = L$ for all $n \in \mathbb{Z}^+$. Since f(a) = b, f(b) = c, and f(c) = a, it follows by the intermediate value theorem that $L, J \subset f(L)$ and $L \subset f(J)$ (see Fig. 2.1).

FIGURE 2.1

f(a) = b, f(b) = c, f(c) = a. Hence $J \subset f(L)$ and $L \subset f(J)$.

Hence, one may apply Lemma 2.2 to produce a sequence $\{Q_n\}$ of closed, bounded intervals with $Q_k \subset Q_0 = L$ and $f^k(Q_k) = I_k = L$. Consequently, $L \subset f^k(L)$. By applying Theorem 1.1 to f^k , we conclude that f^k has a fixed point in L and, consequently, f has a k-periodic point in I.

2.2 Converse of Sharkovsky's Theorem

The question that we are going to address in this section is the following: given any positive integers k and r with k > r, is there a continuous map that has a point of period r but no points of period k? The answer to this question is a definite yes. Here we give a simple proof of this result which is based on our paper [21].

THEOREM 2.3

(A Converse of Sharkovsky's Theorem). For any positive integer r, there exists a continuous map $f_r: I_r \to I_r$ on the closed interval I_r such that f_r has a point of prime period r but no points of prime periods s, for all positive integers s that precede r in the Sharkovsky's ordering, i.e., $s \rhd ... \rhd r$.

PROOF In order to accomplish the proof, we have three cases to contemplate.

- 1. Odd periods
- 2. Periods of the form $2^n \times$ odd positive integers
- 3. Periods of powers of 2, i.e., 2^n

Case 1: Odd Periods.

(a) Let us construct a continuous map that has points of period 5 but no points of period 3. Define a map $f: [1, 5] \rightarrow [1, 5]$ as follows:

$$f(1) = 3$$
, $f(2) = 5$, $f(3) = 4$, $f(4) = 2$, and $f(5) = 1$.

On each interval [n, n+1], $1 \le n \le 4$, we assume f to be linear (see Fig. 2.2).

Observe first that none of the points 1, 2, 3, 4, 5 is a 3-periodic point; they all belong to the single 5-cycle: $1 \xrightarrow{f} 3 \xrightarrow{f} 4 \xrightarrow{f} 2 \xrightarrow{f} 5 \xrightarrow{f} 1$. Note also that

$$f^3([1,2]) = [2,5], f^3([2,3]) = [3,5], \text{ and } f^3([4,5]) = [1,4].$$

Hence, f^3 has no fixed points in the intervals [1, 2], [2, 3], and [4, 5]. The situation with the interval [3, 4] is much more involved since $f^3([3, 4]) =$

FIGURE 2.2 A map of period 5 but no points of period 3.

[1, 5]. This implies by Theorem 1.1 that f^3 must have a fixed point \bar{x} in the interval [3, 4]. We must show now that this fixed point of f^3 is really a fixed point of f and thus is not of prime period 3. Observe that $f(\bar{x}) \in [2, 4]$. So, if $f(\bar{x}) \in [2, 3]$, then $f^2(\bar{x}) \in [4, 5]$ and $f^3(\bar{x}) \in [1, 2]$. But, this is impossible since $f^3(\bar{x}) = \bar{x} \in [3, 4]$. Therefore, we conclude that $f(\bar{x}) \in [3, 4]$. Note that $f^2(\bar{x}) \in [2, 4]$. Again, if $f^2(\bar{x}) \in [2, 3]$, then $f^3(\bar{x}) \in [4, 5]$, yet another contradiction. Thus, the orbit of \bar{x} , $\{\bar{x}, f(\bar{x}), f^2(\bar{x})\}$ is a subset of the interval [3, 4].

Now, on the interval [3,4] f(x) = 10 - 2x has the unique fixed point $x^* = \frac{10}{3}$. Moreover, on [3,4] $f^3(x) = 30 - 8x$ also has the unique fixed point $\bar{x} = \frac{10}{3} = x^*$. Hence, f has no points of prime period 3.

(b) One may generalize the above construction in order to manufacture continuous maps that have points of period 2n + 1 but no points of period 2n - 1. Details will be given in the problems (Problems 3, 4, and 5).

Case 2: Periods of the Form $2^k(2n+1)$.

(a) We begin by constructing a map that has points of period 2×5 but has no points of period 2×3 . Consider first the map $f: [1,5] \to [1,5]$ as defined in Case 1(a). This map has points of period 5 but has no points of period 3. We will use this map to construct a new map \tilde{f} , called **the double** of f, as follows:

$$\tilde{f}: [1, 13] \to [1, 13],$$

$$\tilde{f}(x) = \begin{cases} f(x) + 8; \ 1 \le x \le 5 \\ x - 8; \quad 9 \le x \le 13. \end{cases}$$

For 5 < x < 9, we connect the points (5, 9) and (9, 1) by a line (Fig. 2.3). The proof that the double map \tilde{f} has a 10-cycle but no 6-cycle is left to the reader as Problem 6.

FIGURE 2.3 A 10-cycle but no 6-cycles.

(b) The general procedure for constructing the double \tilde{f} of any map $f: [1, 1+h] \to [1, 1+h]$ is as follows: $\tilde{f}: [1, 1+3h] \to [1, 1+3h]$, where

$$\tilde{f}(x) = \begin{cases} f(x) + 2h; & 1 \le x \le 1 + h \\ x - 2h; & 1 + 2h \le x \le 1 + 3h \end{cases}$$

and \tilde{f} is linear for 1+h < x < 1+2h. So, if we want to construct a map with points of period 2(2n+1) but no points of period 2(2n-1), $n=3,4,5,\ldots$, we start with a map f that has points of period (2n+1) but no points of period (2n-1). Then, its double map \tilde{f} will have the desired properties (Problem 7).

Case 3: Periods of the Form 2^n .

(a) It is easy to construct a map that has points of period $2^0 = 1$ (fixed points) but no points of prime period 2^1 . Just pick any map f(x) = ax + b with $a \neq \pm 1$. To construct a map that has points of period 2 but no points of period 2^2 , we consider the map f(x) = -x + b. Then, $x = \frac{b}{2}$ is a fixed point of f. However, $f^2(x) = -(-x + b) + b = x$. Thus, every point, with the exception of $x^* = \frac{b}{2}$, is of prime period 2.

2.2. CONVERSE OF SHARKOVSKY'S THEOREM

(b) To construct a map that has points of period 2^2 but no points of period 2^3 , we use the double map \tilde{f} of the map f(x) = -x + 3 (see Fig. 2.4). Map doubling may be used repeatedly to construct maps with 2^n -cycles but no 2^{n+1} -cycles.

FIGURE 2.4 A 4-cycle but no 8-cycles.

Unresolved questions that remain to be settled are as follows:

- 1. Can we construct a continuous map that has points of period $2^n \times 3$ but has no points of any period of the form $2^{n-1} \times$ odd integer (see Problem 12)?
- 2. Can we construct a continuous map that has points of period 2^n for all $n \in \mathbb{Z}^+$ but no points of any other period [2] (see Problems 12 and 13)?

Exercises - (2.1 and 2.2)

- 1. Show that the piecewise linear map $g:[1,7] \rightarrow [1,7]$ shown in Fig. 2.5 has a 7-cycle but does not have a 5-cycle.
- 2. Mimic Problem 1 to construct a map that has a 9-cycle but not a 7-cycle.
- 3. Construct a map that has a (2k+1)-cycle but has no (2k-1)-cycle for any k>3.
- 4. Consider the map f defined in Fig. 2.2 on the interval I = [1, 5]. Define a new function \tilde{f} on J = [1, 13] (called the **double** of f) by compressing

FIGURE 2.5 A 7-cycle but no 5-cycles.

the graph of f into the upper left square. Explicitly, we let

$$\tilde{f}(x) = \begin{cases} f(x) + 8 & \text{for } 1 \le x \le 5 \\ x - 8 & \text{for } 9 \le x \le 13 \end{cases}.$$

Then we connect the points (5, 9) and (9, 1) by a line. Show that the map \tilde{f} (Fig. 2.3) has a 10-cycle but not a 6-cycle.

- 5. Mimic Problem 4 to produce a map with a 14-cycle but not a 10-cycle.
- 6. Construct a map that has a 2(2n + 1)-cycle but no 2(2n 1)-cycles.
- 7. Let f be a map defined on the interval I = [1, 1+h]. Define \tilde{f} , "the double of f," on [1, 1+3h] as follows:

$$\tilde{f}(x) = \begin{cases} f(x) + 2h & \text{for } 1 \le x \le 1 + h \\ x - 2h & \text{for } 1 + 2h \le x \le 1 + 3h \end{cases}$$

and filling the rest of the graph as in Fig. 2.5. Prove that \tilde{f} has a 2n-periodic point at x if and only if f has an n-periodic point at x. Show that if f has points of period $2^k(2n+1)$, then \tilde{f} has points of period $2^{k+1}(2n+1)$.

- 8. Construct a map that has an 8-cycle but no 16-cycle.
- 9. Construct a map that has a 2^k -cycle but no 2^{k+1} -cycle, for k > 3.
- 10. (a) Construct a continuous map that has a point of period 2×3 but no points of odd periods.

2.3. BASIN OF ATTRACTION

61

(b) Describe the procedure of constructing a map of period $2^n \times 3$ but has no points of period $2^{n-1} \times$ odd integer.

For another construction of the double map on the same interval: Let I=[0,1] and $f:I\to I$ be continuous. Define the double map \tilde{f} by

$$\tilde{f}(x) = \begin{cases}
\frac{2}{3} + \frac{1}{3}f(3x) & \text{for } 0 \le x \le \frac{1}{3} \\
[2 + f(1)](\frac{2}{3} - x) & \text{for } \frac{1}{3} \le x \le \frac{2}{3} \\
x - \frac{2}{3} & \text{for } \frac{2}{3} \le x \le 1
\end{cases}$$

- 11. Show that \tilde{f} has a 2n-periodic point at x if and only if f has an n-periodic point at x.
- 12*. Use Problem 11 to construct a continuous map that has fixed points of period 2^n for all $n \in \mathbb{Z}^+$, but has no points of any other period.

 (Hint: Start with $f(x) = \frac{1}{3}$ on [0, 1]. Let $f_1 = \tilde{f}$ by its double map, $f_2 = \tilde{f}_1, \ldots, f_n = \tilde{f}_{n-1}$. Define $f_{\infty}(x) = \lim_{n \to \infty} f_n(x)$. Show that f_{∞} is continuous and has points of period 2^n for all n and no other periods.)
- 13*. Construct a continuous map that has points of period 2^n for all $n \in \mathbb{Z}^+$ but has no points of any other period.
- 14*. Generalize the Li-Yorke theorem (Theorem 2.2) as follows: Let J be an interval and let $f: J \to J$ be continuous. Assume there is a point $a \in J$ for which the points b = f(a), $c = f^2(a)$, and $d = f^3(a)$, satisfy $d \le a < b < c$ ($d \ge a > b > c$). Prove that for every $k = 1, 2, \ldots$ there is a periodic point in J having period k.
- 15. Let f be a continuous map on the interval [a, b]. If there exists a point $x_0 \in [a, b]$ with $f^2(x_0) < x_0 < f(x_0)$, or $f(x_0) < x_0 < f^2(x_0)$, prove that f has a 2-cycle in [a, b].
- 16. Prove that a homeomorphism of R cannot have periodic points with prime period greater than 2. Give an example of a homeomorphism that has a point of prime period 2.
- 17*. (Li and Yorke) [39]. Under the assumption of Problem 14, show that there is an uncountable set $S \subset J$, containing no periodic points, which satisfies the following conditions:

(a) For every $x, y \in S$ with $x \neq y$,

$$\lim_{n\to\infty}\sup|F^n(x)-F^n(y)|>0$$

and

)

$$\lim_{n\to\infty}\inf|F^n(x)-F^n(y)|=0.$$

(b) For every $y \in S$ and periodic point $q \in J$,

$$\lim_{n\to\infty}\sup|F^n(x)-f^n(q)|>0.$$

2.3 Basin of Attraction

It is customary to call an asymptotically stable fixed point or a cycle an **attractor**. This name makes sense because the orbits of all nearby points tend to the attractor. The maximal set that is attracted to an attractor M is called the **basin of attraction** of M. Our analysis here applies to cycles of any period, but for simplicity we will restrict our attention to attracting fixed points.

DEFINITION 2.1 Let x^* be an asymptotically stable fixed point of a map f. Then the **basin of attraction** (or the stable set) $W^s(x^*)$ of x^* is defined as the maximal interval J containing x^* such that if $x \in J$, then $f^n(x) \to x^*$ as $n \to \infty$.

Observe that from the definition of an attractor, $W^s(x^*)$ contains an open interval around x^* .

Example 2.1

- 1. The map $f(x) = x^2$ has one attracting fixed point $x^* = 0$. Its basin of attraction $W^s(0) = (-1, 1)$. Note that 1 is a fixed point and -1 is an eventually fixed point that goes to 1 after the first iteration.
- 2. The logistic map $F_{2.5}(x) = 2.5x(1-x)$ has one attracting fixed point $x^* = 0.6$ whose basin of attraction is $W^s(0.6) = (0, 1)$.

It is worth noting here that finding a basin of attraction of a fixed point is in general a difficult task. The most efficient method to determine the basin