Chapter 7

The Julia and Mandelbrot Sets

A manifesto: There is a fracta] face to the geometry of pature,

Benoit Mandelbro¢

m
7.1 Mapping by Functions on the Complex Domain

Letz=x+iybea complex number and let C denote the set of complex
numbers. Then x is called the real partof z, %(z), and y is called the imaginary
part of z, 5(z). Note that both x and Y are real numbers. If we let the x axis
to be the real axis and the ¥ axis to be the imaginary axis, then the complex
number z = x 4y is represented by the point (x, ) in this complex plane (see
Fig. 7.1). The modulus 2] of z is defined ag lz] = /xZ £ 32 it is the distance
between z and the origin. A complex number Z=x - iy may be represented
in polar coordinates. Let y = lz), and 8 = tan“‘(;"»). Then 6 is called the
argument of z, denoted by arg(z). Morcover, z = ref? It is noteworthy to
observe that |z| = r|e'| = r. since ] = |cos@ -t i sind] = 1.

The triangle inequality that we encountered in the real number system still
holds for complex numbers.

Triangle Inequality for Complex Numbers

Letzy, zo € C. Then

@ lz1 +22] < 21| + |zaf

(b) Hzi + za] 2 lz1[ — |z,
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FIGURE 7.1
The modulus of a complex number |z| and its argument @.

Consider a linear map f : C — €, where C is the set of complex numbers
of the form f(z) = az, where @ = ¢ -+ ib, andz = x + iy.
Now, « and z may be written in the following exponential forms:

. b ’
o =se, with s =va2+ 52, and g = tan™! (—)

]

a
z=re, with r = /x2 + y%, and @ = tan™! (X)
X

We may wrile £(z) as f(z) = sre'O+8)
Note also that f2(z) = s2r¢/0+28) 44 generally

F @) = s"rfO+ns) (7.1y
Clearly, we have three cases to consider:

I. 5 < I: In this case, it follows from Eq. (7.1) that the orbit of 7 will

spiral toward the origin. We may say, then, that the origin is asymptoti-
cally stabie.

2. s > 1: FromEq. (7.1) we conclude that the orbit of z spirals further away
from the origin and thus the origin is unstable.

3. 5 = 1: In this case the orbit of z stays on the circle of radius ry and the
map is a rotation on the circle. Recall that we have discussed this map
tn Chapter 3. Tt was shown that if B is rational, then every point on a
circle of radius rg is periodic, and if B is irrational, then the map on each
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TIGURE 7.2
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Iteration of a point z = re!® under the map f(z) =az, c =a-+ib, s =

va* +b% (a) s < 1 : origin is asymptotically stable, (b) s > 1 : origin is
unstable, (¢} ¢ = 1 ; origin is stable.

circle of radius ry is transitive, with the set of periodic points' dense but

not chaotic.

Next, we consider more complicated nontinear maps.
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Example 7.1

Consider the squaring map Qg(z) = z2. Then for z = re'®, Qy(z) = r2ei2¥.
Note that this function maps the upper half plane r > 0,0 < 8 < 7 onto the
entire complex plane (Fig. 7.3).

%

)

b
FIGURE 7.3

The map Qy(z) = z* maps the upper half plane onto the entire complex
plane.

Now, if we let z = x +iyandw = Colz) = u +iv, thenu + iv =
x* — y2 4 i2xy. Thus,

#=x*— y2, v=2xy. (7.2)

Hence, each branch of the hyperbola x — y2 = g, (@ > 0) is mapped in a

one-to-one manner onto the vertical line # = a. To see this, we note from the

firstpart of Bg. (7.2) that u = a if {(x, y) is apoint on one of the two branches of

the hyperbola. When in particular it lies on the right-hand branch, the second

part of Eq. (7.2) tells us that v = 2y./y? +- 4. Thus, the image of the right-hand
branch can be expressed parametrically as

I=a, v=2y/y?+aq, -0 <Y <00 ‘

and is evident that the image of a point (x, y) on that branch moves upward

along the entire line as (x, y) traces out the branch in the upward direction

(Fig. 74).
Similarly,

t=a, v=—-2y/yita

707
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FIGURE 7.4
Qo maps a hyperbola to the line x — a.

furnishes a parametric representation for the image of the left-hand branch of
the hyperbola. Thus, the left-hand branch of the hyperbola is mapped to the
fine u = g.

Let us now turn our attention to the analysis of the dynamics of the map Qg.

Clearly, 05(2) = r ol 20 Furthermore, IQ'g(z)l = r?, Consequently, we
conclude that (see Fig. 7.5)

FIGURE 7.5
Orbits of the points 0.8¢/7/4, in/4

Qoz) = z2.

and 1.2¢"/* ynder iteration of

L 1Q3(z) = Oasn — coifr < 1 or (zf < 1).
2. |05 = coasn — coifr > 1 or (lz| = 1).

1@l =Tifr=1or (lz] = 1).
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Next we consider the square root map.

Example 7.2
Consider'lhe function f(z) = z!/2,
Ifz=re?® (>0 —n<@ <), then

; [B42k0) I:]

M= rédTT o, k=0,1. (7.3)

The principal branch of the double-valued function z'/2 is given by fj(z) =

Jret®2 —w < g <m, r > 0. Note that the origin and the ray § = 7 form'

the branch cut for fp, and the origin is the branch point.
From Eq. (7.3) the two square roots of z are

21 = /1 (cos(8/2) + i sin(6/2))

22 = A/ (cos'(wg +JT) +isin (% +ﬂ'))
= —/r (cos(8/2) + i sin(8/2))
(see Fig. 7.6).

Zy

%2

FIGURE 7.6
z = re'® and its two square roots z; and z,.

If 5* is a circle of radius r and center at the origin, then F(S!) is another
circle of radius ./ centered at the origin [Fig. 7.7a(a)].

The situation is entirely different when the circle S! does not contain the
origin. Here the circle les in a wedge ) < 8 < 6. Hence, the argument of
each pointin f(S) lies in the wedge 81 /2 < € < 63/2 and its reflection with
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FIGURE 7.7a
(2) The image of S' when it is centered at the origin.
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FIGURE 7.7b

(b) The image of S! when it is not centered at the origin.

respect to the origin. Hence, f(S) is the union of two closed curves as shown
in Fig. 7.7a(b). Observe that when the circle 5! touches the origin, £(S") looks
like figure eight {Fig. 7.7¢(c)]. Finally, when S* encircles the origin, £(5%)
looks like a peanut shell [Fig. 7.7(dY].

Aset D in the complex plane C is called a domain if it is open and connected,
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(c) The image of S! when it passes through the origin.
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{d) The image of S! when it encircles the origin.

DEFINITION 7.1 A function £ is said to be analytic in a domain Dif it
has a derivative at every point in D.

We now state the main stability theorem for complex functions.

THEOREM 7.1
Let 2% be a fixed point of an analytic complex function f. Then, the Jollowing
statements hold:

L I f(z*) < 1, then z¥ is asymptotically stable.

2. If [ f'(z*)] > 1, then z* is unstable.
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PROOF  The proof is similar to that of Theorem 1.3 in Chapter 1 and will
be left to the reader as Problem 10. i

As an immediate consequence of Theorem 7. 1, we have the following result;

COROLLARY 7.1

Let z be a k-periodic point of an analytic function f. Then the Jollowing
Statements hold:

LI (f@)... U~ < 1, then z is asymptotically stable.
2 FIF Q@) - 1@ > 1, then 7 is unstable,

Example 7.3
Consider the map f(z) = 2%, z € C.

(a) Find the fixed points of f and determine their stability,

(b) Find the 2-cycles of f and determine their stability. I

SOLUTION

(a) Fixed poinis: 77 — z = z2(z2 ~ 1) = 0. Hence, the fixed points are: 7} =
0,23 =1, 2§ = ~1. Since | f'(z})] = 0, '@ =3, and | f'(z3)] =
3, it follows from Theorem 7.1, that 0 is asymptotically stabie, while
1 and — 1 are unstable.

(b) To find the 2-cycles, we solve the equation f3(z) = z. Hence, 7% — 7 =
2(z®~1) = 0. Since Oisa fixed point, we have 78 = |, Thus, the 2-cycles
of f(z) are the eighth roots of {, excluding 1 and — 1 since they are fixed
points of f. The eighth roots of 1 are w, w?, w?, w’ wb, w’, where

1 1

w=cosf+ising = % —]—1—2":‘ Note that w* = ~1 is excluded from
this list. Hence, the 2-cycles are {w, w?), (w? %)}, and w3, w’). It
follows from Corollary 7.1 that all 2-cycles are unstable, B

7.2 The Riemann Sphere

To simplify the study of the dynamics of analytic maps, it is beneficial to
consider the extended complex plane CU {co}. To describe the topology of this
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space, we introduce a special representation of the complex plane. Consider
the sphere §? with radius % and center (0, 0, é) that is tangent Lo the complex

plane C at the origin (0, 0, 0). The point N (0,0, 1) will be referred to as the .

north pole of 5% (see Fig. 7.8). We now introduce the stereographic projection
S,

Let P(a, b, c)eS?\{N). The line joining N to P will pierce C at the point
Q(a/(1—c), b/{1—c), 0), which corresponds to the complex number z = (g -+
ib}/(1 —c¢) (Problem 6). Conversely, any point Q(x, y,0) in C corresponding
to the complex number z = x + iy lies on a line passing through the point N
and intersecting the sphere 2 at a point P(x, 8, y) with

= X 8= ¥y _ xz-l—y2
Byl T T YT

(see Problem 11).

N{©,0,1)

S{z)

FIGURE 7.8
The Riemann Sphere: Stereographic projection from 52 into C.

Note that this gives a correspondence W from C > onto SI\(N}. We then let
W(co) = N. Hence, the extended complex plane C = C U {co} is identified
with the sphere S2, and either one will be called a Riemann sphere.

For any z9 # 00, we define an open ball B,(zq) as Be(z0) = {zeC : |z —

z0] < &). We define open balls around co as follows: For any £ > 0, we
let By(co) = [zeC @ |z] > %}. Note that the W takes B,(co) to an open

neighborhood of the north pole N (0, 0, 1). The above description of open balls
determines a metric on the extended complex place C. :

7.2. THE RIEMANN SPHERE 299

Linear Fractional Transformation (Mdbius Transformation)

The transformation T'(z) = 4t a4 — pe £ 0, where a, b, ¢, d are com-

plex constants, is called a linear fractional transformation (or Mébius trans-
formation). The map T may be extended to T by letting T{(c0) == a/c, and
T'(zp} = co when czp + & = 0. An important property of the map T is that it
maps circles in C to circles. Note that a line in the complex plane C becomes a
circle through oo in the extended complex place C. Hence, T maps lines and
circles in € to lines and circles in €.

Exercises - (7.1 and 7.2)

1. f z = x - iy, then we may write z = r(cos# - i sin @), where r =
Vx? 4+ y2,8 = arctan(y/x). The two square roots of z are given by

/7 (cos(8/2) + i sin(6/2)) .

Find the square roots and then draw them on the complex plane.

(a) i
(b) =1+
(€) ~1+4/3i
) 14
{e) —24-2i
-6
2. Plot the orbit of z = 0 under the following maps:
(@) gz} =z~1

b) f@)=z+2
3. Let f(z)=az+b, a,beC.

(a) Under what conditions does f have fixed points? Then find the
fixed points of f if they exist.

(b} Show thatif @ 5 1, then f is topologically conjugate to a map of
the form z — cz.
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Let g(2) = az, witha = $¢™ /3,

{(a) Show that the orbit of | under g looks like a spiral. Then find the
equalion of this spiral.

(b) Show that if z; and zz are two points on the spiral that lie on the
same ray extending from the origin, then there exists k ¢ Z* such
that g%(z1) = 23 or g¥(z2) = z1.

. Consider the map Q4 (z) = z2 + 1 /4.

(a) Show that @)4(z) has a single fixed point. Then determine its -

stability.
(b) Find the repelling 2-cycles of Q4.

. Show that Q,(z) = z* + ¢ has an attracting 2-cycle inside the cm:le w:th

radius 1/4 and center (~1, 0).

. Let f(z) = &9z,

{(a) Show thatif @ is a rational multiple of &, then every point in C is -

periodic.

(b) Show thatif 4 is not a rational multiple of r, then the orbitof z € C
is dense in the circle with radius |z} and center at the origin.

. Let Qg : T — C be defined by Qg(z) = z%. If § is the circle of radius 1

and center (—1, 0, find and draw Qa'l (8) and QaZ(S).

. Consmler Qg(z) = z2 + 2 and the unit circle § = {z 1 ]z| = 1). Sketch

05"(8y and 054(S).
Prove Theorem 7.1.

{(a) Show that the stereographic projection takes a point (a,b,c) €
S2\{N} to the point z = (& + ib)/{1 — ¢} in the complex plane.

(b} Show the converse, i.¢., that a siereographic projection takes a point
7 = x + iy in the complex plane to the point

X y x= 4 y= )
Xy 4 24y T x2y2p 1)

Show that the map T(z) = Eif%:;ii; maps the real axis in the complex
plane to the unit circle.
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13. Show that the map g(z) = asz +2a1z+au, withay % 01is topologically
conjugate to the map Q.(z) = z + ¢ through the conjugacy map (z) =
azz + ay, provided that ¢ == -—a] + a; + azag.

14. Prove that any Mobius transformation may be written as a composition
of translations (of the form z — z + a), inversions (of the form z—> l)
and homothetic transformations (of the form z — bz).

15. Assume that (a —d)2+4bc = 0 in the Mébius transformation T = azth,

{2) Show that T has a unique fixed point z* = a — d.
“(b) Show that T' is (analytically) conjugate to a translation of the form

Z=>z+a.

16. Show that if the Mbius map T has two fixed points, then it is (analyti-
cally) conjugate to a unique linear map of the form z — bz,

7.3 The Julia Set

In this section our goal is to study the Julia set, one of the most fascinating and
extensively studied objects in the theory of dynamical systems. This famous set
was introduced by the French mathematician Gaston Julia (1893-1978) in his
masterpiece paper, Mémoire sur "iteration des fonctions rationelles (J. Math.
Pure Appl., 4, 1918, 47-245). 1t is interesting to note that Julia was only 25
years old when he published this monumental work of 199 pages.

We begin our exposition by defining two sets: the Julia set and the filled Julia
set.

DEFINITION 7.2 Let f : € — C. Then the filled Julia set K (f) of the
map [ is defined as

K(f)=1{zeC: 0() isbounded ) .

The Julia set J(f) of the map £ is defined as the boundary of the filled Julia
set K{f). Equivalently, one may define J as the boundary of the escape set

={zeC:|f"(2)| — 0 as n — o0} .



