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14. A population of birds is modeled by the difference equation
3.2x(n); for 0<x(nm)y <1
41 =
0.5x(n) +2.7; for x(n) > 1

where x(#) is the number of birds in year n. Find the equilibrium points
and then determine their stability.

L )

1.6 Criteria for Stability

In this section, we will establish some simple but powerful criteria for local
stability of fixed points. Fixed (equilibrium) points may be divided into two
types: hyperbolic.and nonhyperbolic. A fixed point x* of a map £ is said to
be hyperbolic if | f/(x*)| % 1.1 Otherwise, it is nonhyperbolic. We will treat

ihe stability of each-type-separately.
1.6.1 Hyperbolic Fixed Points

The following resuit is the main tool in detecting local stability.

THEOREM 1.3

Let x* be a hyperbolic fixed point of a map f, where f is continwously differ-
entiable at x*. The following statements then hold true:

LAFIF &N < L then x* is asymprotically stable.

2 If1F(x™ > 1, then x* is unstable.

PROOF 1. Suppose that | f'(x*}| < M < | for some M > 0. Then, there
is an open interval 7 = (x* — g, x™ + £) such that [fHx) < M < 1 forall
x & I (Why? Problem 11). By the mean value theorf:m,5 for any xg € I, there
exists ¢ between xp and x* such that

|£(x0) = 27 = [f Qo) ~ FO) = | F(0)llvo — x*| < Mlxg — x*| . (1.13)

The mean value theorem. If £ is continuous on the closed interval [«, 5] and is differentiable an -
the open interval (a, b}, then there is a nutmber ¢ in («, b} such that f/(c) = U’z:ﬂ )
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Since M < 1, Inequality (1.13} shows that f(xp) is closer to x* than xq.

Consequently, f(xo) € 1. Repeating the above argument on f(xq) instead of
xp, we can show that

|£2(x0) — x*| < M|f(xp) — x*| < M2|xp — x*] . (1.14)

By mathematical induction, we can show that for all# € ZT,

" (o) — £ < M"[xp — 2] (1.15)

To prove the stability of x*, for any ¢ > 0, we let § = &, Then, |xp —

x*| < & implies that | f"(xg) ~ x*| < M"|xp — x*| < &, which establishes

stability. Furthermore, from Inequality (1.15) n]g:g(j [ xp) —x*| =0 and thus
im f"(xp) == x*, which yields asymptotic stability. The proof to part 2 is left

n—00

to you as Problem 3. i

The following examples illustrate the applicability of the above theorem.

Example 1.6
Consider the quadratic map Q(x) = 1 — Ax? defined on the interval [—1, 1],
where A € (0,2]. Find the fixed points of 0, and determine their stability.

SOLUTION  To find the fixed points of Qx we solve the equation Ax2 +
x — 1 = 0. There are two fixed points:

~1-VTFa —1+/T+ax
2 2 '

Observe that O} (x) = —ZAx.iIhus, 104 (x1)] = 1++/T+4x > 1, and hence,
xj is unstable forall A € (0, 2]:}Furlhcrmore, O =/TF4 -1 < Lif
and only if /T + 4% < 2. Solving the latter inequality for A, we obtain A < 2.
This implies by Theorem 1.3 that the fixed point x3 is asymptotically stable if
0 <X < §and unstable if A > 3 (see Fig. 1.13). When A = 3, @} (x2) = —1.
This case will be treated in Section 1.6.2.

X = nd x; =

Example 1.7
(Raphson-Newton’s Method)., Raphson-Newton’s method is one of the sim-
plest and oldest numerical methods for finding the roots of the equation

[
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x{n+1) Flxa)

x{n)

FIGURE 1.13

{a) A = %, x3 is asymptotically stable while b A= %, X3 is unstable.

g(x) = 0. The Newion algorithm for finding a zero r of g(x) is given by
the difference equation

g(x(n)
g'(x(n))

where x(0) = xg is our initial guess of the root r. Equation (1.16) is of the
form of Eq. (1.13) with

xn+1y=x@n) -

(1.16)

(x)
fulxy=x~ g, (1.17)
g'(x) ‘
where fy is called Newton’s function. 0

We observe first if » is a root of g(x), i.e., g(r) = 0, then from Eq. (1.17) we
have fy(r) = r and thus r is a fixed point of fy (assuming that g'(r) £ 0). On

the other hand, if x* is a fixed point of fw then from Eq. (1.17) again we get "

g(x™)

YioR 0. This implies that g(x*) = 0, i.e., x* is a zero of g(x). Now, starting -

with a point xg close to a root r of g(x) = 0, then Algorithm (1.16) gives the

next approximation x(1) of the root r. By applying the algorithm repeatedly,
we obtain the sequence of approximations

0= x(O), x(1), x(2),..., x(n), ...

(see Fig. 1.14). The question is whether or not this sequeice converges to the
root r. In other words, we need to check the asymptotic stability of the fixed
point x* = r of fy. To do so, we evaluate S (r) and then use Theorem 1.3,

: [g' (N1 — 2(r)g"(r)
= 1=
g (g’ (r)1?

=0, since g(r)=0.

A © :, / _ x5 V X
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Hence, by Theorem 1.3, lim x{n) = r, provided that xg is sufficiently close to
H—=00
r.

For g(x) = x?—1, we have two zero's — I, L. Inthis case, Newton’s function

isgiven by fy(x) =x— x%l = %xﬂ The cobweb diagram of fx shows that
Newton’s algorithm converges quickly to both roots (see Fig. 1.15).

/

\__/?«2) x1) X(0)
FIGURE 1.14

Newton’s method for g(x) = x — |,

x(n+1)

FIGURE 1.15
Cobweb diagram for Newton’s function fy when g(x) = x2 — 1.
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1.6.2 Nonhyperholic Fixed Points

The stability criteria for nonhyperbolic fixed points are more involved.’ They
will be summarized in the next two results, the first of which treats the case
when f/(x*) = 1 and the second for f/(x*) = —1.

THEOREM 1.4

Let x* be a fixed point of a map f such that f'(x*) = 1. IF 7%y £ 0and
continuous, then the Jollowing statements hold:

L If 7 (x*) # 0, then x* is unstable,
2. IF ') = 0and £ (x*) > O, then x* is wiistable,
LI FaN =0and f7(x*) < O, then x* is asymptotically stable.

PROOF 1. Assume that f'(x*) = 1 and f(x") # 0.

Then, the curve y = f{(x) is either concave upward ( f*{x*) > 0} or concave
downward (f"(x*) < 0), as shown in Fig. 1.16(a) and (b). Now, if f7(x*) > 0,
then f'(x) is increasing in a small interval containing x*. Hence, f'(x) > 1
for all x € (x*, x* 4- 8), for some small § > 0 [see Fig. 1.16¢a)]. Using the
same proof as in Theorem 1.3, we conclude that x* is unstable, Similarly, if
f"(x*) < Othen f'(x) is decreasing in a small neighborhood of x*. Therefore,
F{x) > 1lorallx € (x*—35, x*), forsome small § > 0, and again we conclude
that x* is unstable [see Fig. 1.16(b)]. Proofs of parts 2 and 3 are left to you as
Problem 14.

The preceding theorem may be used to establish stability criteria for the case
when f/(x*) = —1. But before doing so, we need Lo introduce the notion of
the Schwarzian derivative,

DEFINITION 1.3 (The Schwarzian derivative). S [ of a function f is
defined by

Sflx) =

1t " 2
frxy 3 [f (x)] ‘ 118

Fixy 2L ()

THEOREM 1.5

Ler x* be a fixed point of a map f such that f'(x*) = —I. If F(x*) is
continuous, then the following statements hold;

1LIf Sf(x™) < 0, then x* is asymptotically stable.
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FIGURE 1.16

(a) f'(x*) = 1, F"(x*) > 0, unstable fixed point, semi-stable from the left.
() f'(x*) = 1, f"(x*) < 0, vnstable fixed point, semi-stable from the
right.

(C‘Tj Flxy =1, f"(x*) =0, f”(x*) > 0, unstable fixed point, -
(d) f'(x*) =1, f"(x*) = 0, f"(x*) < 0, asymptotically stable fixed point.
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2.If Sf(x™) > O, then x* is unstable.

PROOF  The main idea of the proofis to create an associated function g with
the property that g’(x*) = 1, so that we can use Theorem 1.4. This function is
indeedg = fo f= f2. Two important facts need to be observed here. First,
if x* is a fixed point of f, then it is also a fixed point of g. Second, if x* is
asymptotically stable (unstable) with respect to g, then it is also asymptotically
stable (unstable) with respect to f (Why? Problem 13). By the chain rule:

§0) = F(F@) = FUF ). (1.19)

Hence,
g =[fht=1

and Theorem 1.4 now applies. For this reason we compute g"(x*). From
Eq. (1.19), we have .

g = FUFENF @) + /PN 02
gM (") = FIGMV ) + PN ()
=0 (since f'(x*) = ~1). (1.20)

Computing g (x) from Eq. 1.20, we get

g7 (x*) = =27 (x*) = 3L ()P

= 2SF(xh). (12D

Statements 1 and 2 now follow immediately from Theorem 1.4. ]

REMARK 1.2 Note that if f'(x*) = —I, then the Schwarzian derivative
Sf(x™) reduces to

3
SN =~y - 1P B (122)
We are now ready (o give an example of a nonhyperbolic fixed point,

Example 1.8

Consider the quadratic map Q(x) = x? + 3x on the interval [-3, 3]. Find the
equilibrium points and then determine their stability.
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SOLUTION  The fixed points of Q0 are oblained by solving the equation
243z =1, Thus, there are two fixed points: x{ =0 and x3 = —2. So for
x}, @'(0) = 3, which implies by Theorem 1.3 that x} is unstable. For x5, We
have Q'(—2) = —1, which requires employment of Theorem 1.5. We observe
that

3
SO(-2) = ~0"(-2) - 5{9”(-2)12 =—6<0.

Hence, x3 is asymptotically stable (see Fig. 1.17).

x(n+1}
X5 %o
x{n)
* %
X 1 0

A

FIGURE 1.17
An asymptotically stable nonhyperbolic fixed point xJ.

T Y
Exercises - (1.6)
In Problems 1-8, find the equilibrium points and determine their stability.
L x(n-1) = x2(n)
2. xn+ )= %x:*(n) + %x(n}



