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16. Prove that a Morse-Smale diffeomorphism of [0, 1] is structurally stable.

17. Prove that the map f(z) = z% + %:n is a Morse-Smale diffeomorphism

on the interval {-1,11.

§1.10 SARKOVSKII’'S THEOREM

In this section, we will prove a remarkable theorem due to Sarkovskii.
The theorem only holds for maps of the real line, but nevertheless is amazing
for its lack of hypotheses (f is only assumed continuous) and strong conclu-
sion. We caution the reader that, as this is our first major theorem, the
material in this section is a little “heavier” than in previous sections. As a
warmup, and also as a means of highlighting the importance of period three
points, we will prove a special case,

Theorem 10.1. Let f:R — R be continuous. Suppose f has a periodic
point of period three. Then f has periodic points of all other periods.

Proof. The proof will depend on two elementary observations. First, if I and
J are closed intervals with 7 ¢ J and f(I) D J, then f has a fixed point in I.
This is, of course, a simple consequence of the Intermediate Value Theorem.

See Fig. 10.1.
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o b ¢
Fig. 10.2. The map Fi.sso(c) = 3.8392(1 — o).

The second observation is the following: suppose Ay, A;,..., A, are closed
intervals and f(4;) D Ay fori = 0,...,n—1. Then there exists at least one
subinterval Jy of Ag which is mapped onto 4;. There is a similar subinterval
in Ay which is mapped onto A3, and thus there is a subinterval J1 C S
having the property that f(J;) C 4; and F2(J1) = 4;. Continuing in this
fashion, we find a nested sequence of intervals which map into the various
A; in order. Thus there exists a point = € Ay such that f"(a:) € A; for each
i. We say that f(A;) covers A;,;. See Exercise 1.

To prove the Theorem, let a,b,¢ € R and suppose fla) =5, F(b) = ¢,
and f(c) = a. We assume that ¢ < b < ¢. The only other possihility,
f(e} = ¢, is handled similarly. This situation arises in the quadratic map F,
for sufficiently large u, and even for some # < 4. In fact, we will exploit this
fact later when we discuss the case y = 3.839 in detail in §1.13. See Fig. 10.2.

Let Iy = [e,b] and I = [b,¢] and note thai our assumptions imply
f(le) O I and f(I1) D Iy U I;. The graph of f shows that there must be
a fixed point for f between b and e. Similarly, f? must have fixed points
between a and b, and it is easy to see that at least one of these points must
have period two. So we let n > 2; our goal then is to produce a periodic
point of prime period n > 3.

Inductively, we define a nested sequence of intervals A, 4y, . Ap 5 C
I, as follows. Set Ag = I;. Since f(I) D Iy, there is a subinterval 4; C
Ap such that f(A;) = Ay = ;. Then there is a subinterval Ay C A4
such that f{4z) = Ai, so that fi4s) = 4y = 1. Continning, we find
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a subinterval 4, 2 C Ap.3 such that f(4,—3) = Ay_3. According to our
second observation above, if # € Ap_3, then f(z), f*(2),..., /" %(z) C Ao
and, indeed, f*%(A4,_5) = 4o = I1.

Now since f(I;) D Iy, there exists 2 subinterval A,_; C An_j such that
f"‘l(An_l) = Iy. Finally, since f(lp) O I; we have, f*(An—1) D I so that
Ff™(An—1) covers 4,_1. It follows from our first observations that f™ has a
fixed point pin Ap—;.

We claim that p actually has prime period n. Indeed, the first n — 2
iterations of p lie in Iy, the (n — 1)* lies in Jg, and the n** is p again. If
F1(p) lies in the interior of Iy then it follows easily that p has prime period
n. i f*~1(p) happens to lie on the boundary, then n = 2 or 3, and again we
are done.

g.e.d.

This theorem is just the beginning of the story. Sarkovskii’s Theorem
gives a complete accounting of which periods imply which other periods
for continuous maps of R. Consider the following ordering of the natural
numbers:

350 7p.--52.362.50---p22.3022.5p ...

p25.3p2% Bp.eeees 22852225 1.

That is, first list all odd numbers except one, followed by 2 times the odds, 22
times the odds, 2% times the odds, etc. This exhausts all the natural numbers
with the exception of the powers of two which we list last, in decreasing order.

This is the Sarkovskii ordering of the natural numbers. Sarkovskii’s Theorem
ist

Theorem 10.2. Suppose f:R — R is continuous, Suppose f has a periodic
point of prime period k. If kv £ in the above ordering, then f also has o
periodic point of period £,

Before proving this Theorem, we note several consequences.

Remarks.

1. I f has a periodic point whose period is not a power of two, then f nec-
essarily has infinitely many period points. Conversely, if f has only finitely
many periodic points, then they all necessarily have periods which are powers
of two. This fact will reappear when we discuss the period-doubling route
fo chaos in a later section.

2. Period 3 is the greatest period in the Sarkovskii ordering and therefore
implies the existence of all other periods, as we saw above.
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3. The converse of Sarkovskii’s Theorem is also true! There are maps which
have periodic points of period p and no “higher” period points according to
the Sarkovskii ordering. We give several examples of this at the end of this
section.

We will give an elementary proof of Sarkovskii’s Theorem due to Block,
Guckenheimer, Misiurewicz and Young. The proof rests mainly on the two
observations which we used above. For two closed intervals, I} and Iy, we
will intreduce the notation Iy — Iy if f(I3) covers I;. I we find a sequence
of intervals Iy — Iy — ... — I — Ii, then our previous observations show
that there is a fixed point of f* in I.

We first assume that f has a periodic point 2 of period n with n odd
and n > 1. Suppose that f has no periodic points of odd period less than
n. Let 21,...,2z, be the points on the orbii of 7, enumerated from left to
right. Note that f permutes the x;. Clearly, f(2qn) < #n. Let us choose
the largest i for which f(z;) > ;. Let I; be the interval [z, 2i41]. Since
Fl2ip1) < wiq1, it follows that f(z:1) < i and so we have that f{I1) D .
Therefore, Iy — I;.

Since z does not have period 2, it cannot be that f(z;y;) = =z; and
f(=i} = miy1 so that f(I1) contains at least one other interval of the form
f2;,¢;41]. A priori, there may be several such intervals, but we will see below
that in fact there is only one. Let (2 denoie the union of intervals of the form
[zj,2j4+1] that are covered by f(I1). Hence we have Oz D I) but Op # I,
and if [; is any interval in O; of the form [j,®;1], then I} — L.

Now let O3 denote the union of intervals of the form [zj,z;41] that
have the property that they are covered by the image of some interval in
2. Continuing inductively, we let Oy be the union of intervals that are
covered by the image of some interval in Oy. Note that, if fp.y is any interval
in Oy, there is a collection of intervals Ia, ..., I; with I; C O; which satisfy
Lobh—...—oIi—=I,.

Now the ¢y form an increasing union of intervals. Since there are only
finitely many zj, it follows that there is an £ for which Oy = Op. For
this € we must have that O, contains all intervals of the form [2;,2;.4.1], for
otherwise = would have period less than n.

We claim that there is at least one interval [z}, 4] different from I; in
some (J; whose image covers I;. This follows since there are more z;'s on
one side of I1 than on the other (% is odd.} Hence some z;’s must change
sides under the action of f, and some must not. Consequently, there is at
least one interval whose image covers I;.

Now let us consider chains of intervals Iy — Iz — ... — I — I; where
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each Iy is of the form [z;,2;41] for some j and where I; # I;. We do not
assume that Iy C Oy. By the above observations, there is at least one such
chain. Let us choose the smallest & for which this happens, i.e., [} — I —
... = Iy — I is the shortest path from I to I; except, of course, I; — I;.
We therefore find a diagram as in Fig. 10.3.

AN

Tw /,

/x—z 1y

'\ L ‘ /
Fig. 10.3.

Now, if k < »n — 1, then one of the loops I} = I —+ ... = I; — I; or
Iy = ..o Iy » I - I gives a fixed point of f™ with m odd and m < k.
This point must have prime period < k since I; N I consists of only one
point, and that point has period > m. Therefore k =n — 1.

Since k is the smallest integer that works, we cannot have I; — I; for
any j > £+ 1. It follows that the orbit of 2 must be ordered in R in one of
two possible ways, as depicted in Fig. 10.4.

It follows that we can extend the diagram depicted in Fig. 10.3 to that
shown in Fig. 10.5. Sarkovskii’s Theorem for the special case of n odd is now
immediate. Periods larger than n are given by cycles of the form I} — ... —
L1 = Iy - ... I;. The smaller even periods are given by cycles of the form

S Iz — In-—l;
Lia— Ly oI s - g~ I

and so forth. For the case of n even, we first note that f must have a periodic
point of period 2. This follows from the above arguments provided we can
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f,/—\/ff /s

T 2

~

/n 3

Fig. 10.4. One possible ordering of the I;.
The other is the mirror image.

guarantee that some z;’s change sides under f and some do not (use the facts
that In_1 « I3 and In_y — I,_;). If this is not the case, then all of the
z;’s must change sides and so f[z1,2i] D [#i41, 24| and flziss, 28] D [21,2i].
But then, our observation above produces a period 2 point in fz1, %]

h-2 a
n-3 ly
. /
S o A

Fig. 10.5.

The Theorem now will be proved for n = 2™ as follows. Let k = 2¢ with
£ < m. Consider ¢ = f*/2, By assumption, g has a periodic point of period
2m—4+1, Therefore, g has a point which has peried 2. This point has period
2f for f.The final case is now n = p - 2™ where p is odd. This case can be
reduced to the previous two. We leave these reductions as Exercises.

q.e.d,
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We now turn to the converse of Sarkovskii’s Theorem. To produce a map
with period 5 and no period 3, consider a map f:[1,5] — [1,5] which satisfies

f(1)=3
f(3)=4
fl4)=2
f(2)=5
f(8) =1

so that 1 is periedic of peried 5. Suppose that f is linear between these
integers, i.e., the graph is as shown in Fig. 10.6.

/ e 3 4 5
Fig. 10.6.

It is easy to check that

P2l =1(2,5
f3[2:3] - {3’ 5]
14,5 = 1,4

so f3 has no fixed points in any of these intervals. It is true thi?,t 33,4 =
[1,5] so that f* has at least one fixed point in [3,4]. But we claim that tths
point is unique, and therefore must be the fixed point for f, no.t the period
3 point. Indeed, f:{3,4} — [2,4] is monotonically decreasing, as is f:(2,4] —
(2,5] and f:[2,5] ~+ [1,5]. Therefore f* is monotonically decreasing on [3,4]
and the fixed point is unique.
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I 2 3 4 5 6 7
Fig. 10.7.

The graph, shown in Fig. 10.7, produces period 7 but not period 5.

This process is easily generalized to give the first portion of the Sarkovskii
ordering. For the even periods, we will introduce a trick. Let f:I — I be
continuous, We will construct a new function F, the double of f, whose
periodic points will have exactly twice the period of those of f, plus one
additional fixed point. The procedure for producing F is as follows, Divide
the interval I into thirds. Compress the graph of f into the upper left corner

of I x I as shown on Fig. 10.8.a. The rest of the graph is filled in as in
Fig. 10.8.b.

Fig. 10.8. Fig. 10.8.2. gives the graph of f(x) while Fig. 10.8.b.
gives the graph of its double, F(z).
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The map F is piecewise linear on [1/3,2/3] and [2/3,1]. Moreover,
F(%) =0, F(1) = 1, and F is continuous.

Note that F' maps [0, }] into [%,1} and vice versa. Also note that if
¢ € [1,2] and = is not the fixed point, then there exists n so that F*(z) €
[0,3]U{%,1]. This implies that there are no other F-periodic points in 3.3
Exercise 7 shows that if z is a periodic point of period n for f, then z/3 is
periodic of period 2n for F. On the other hand, if y is F-periodic then either
y or F(y) lies in [0,%] and Exercise 9 shows that 3y or 3F(y) is f-periodic.
Thus to produce a map with period 10 but not period 6, we need only double
the graph of a function with period 5 but not period 3.

As a final remark, we must emphasize that Sarkovskii’s Theorem is very
definitely only a one-dimensional result. There is no higher dimensional
analogue of this result. In fact, the Theorem does not even hold on the
circle. For example, the map which rotates all points on the circle by 120°
makes all points periodic with period three. There are no other periods
whatsoever.

Exercises

1. Suppose Ag, A,..., Ay are closed intervals and f(A4;) D Aiyg for i =
0,...,n— 1. Prove that there exisis a point z € Ag such that f*(z} € 4; for
each 7.

2. Prove that if f has period p- 2™ with p odd, then f has period ¢-2™
with g odd, ¢ > p.

3. Prove that if f has period p-2™ with p odd, then f has period 2L, £ <m.
4. Prove that if f has period p - 2™ with p odd, then f has period ¢ - 2™
with ¢ even.

5. Construct a piecewise linear map with period 2n + 1.

6. Give a formula for F(z) in terms of f(z), where F(z) is the double of
f(z)-

7. Prove that F{z), the double of f(z), has a periodic point of period 2n
at /3 iff £ has f-period n.

8. Construct a map that has periodic points of period 27 for j < £ but not
period 2¢.

9. Prove that if F(z), the double of f(z), has a periodic point p the.xt is not
fixed, then either p or F(p) lies in [0, }]. Prove that, in this case, either 3p
or 3F(p) is a periodic point for f.

.. Proof. Suppose
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§1.11 THE SCHWARZIAN DERIVATIVE

In this section, we describe a tool first introduced into the study of one-
dimensional dynamical systems by Singer in 1978, This is the Schwarzian

- derivative. Actually, the Schwarzian derivative plays an important role in

complex analysis, where it is used as a criterion for a complex function to
be a linear fractional transformation. In one-dimensional dynamics, the

- Schwarzian derivative is a valuable tool for a number of reasons. In this
_section, we will show how it may be used to establish an upper bound on

the number of attracting periodic orbits that certain maps may have. We
will also use it to prove that other maps have an entire interval on which the

~map is chaotic. Later, in §§ 17-19, the Schwarzian derivative will play an

important role in our discussion of how families of maps like the quadratic
family make the transition from simple to chaotic dynamics.

Definition 11.1 The Schwarzian derivative of a function f at & is

_ fm(m) _._E f”(@) 2
Sf(z) = i) z(f’(m)) .

For example, if Fy(x) = pz(1 —a) is our quadratic model mapping, then
SF,(z) = —6/(1 - 2z)?, 50 that §F,{=) < 0 for all = (even =z = 1/2, the

“critical point, at which SF,(z) = —o0).

For us, functions with negative Schwarzian derivative will be most im-

- portant. Besides the gquadratic map, many other functions have negative

Schwarzian derivatives. For example, S(¢®) = —~1/2 and S{sinz) = -1 —

: -g-(ta.n2 z) < 0. Many polynomials have this property, as the following propo-
sition shows.

Proposition 11.2. Let P(z) be a polynomial. If all of the roots of P'(z)

:are real and distinct, then SP < 0.

N
P'(2) = [[(o - o)

i=1



