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§1.4 HYPERBOLICITY

Simple maps like id(z) = =z and f(z) = —= are, unfortunately, atypical
among dynamical systems. There are many reasons why this is so, but
perhaps the most unusual feature of these maps is the fact that all points
are periodic under iteration of these maps. Most maps do not have this type
of behavior. Periodic points tend to be more spread out on the line. In this
section we will introduce one of the main themes of this book, hyperbolicity.
Maps with hyperbolic periodic points are the ones that occur typically in
many dynamical systems and, moreover, they provide the simplest types of
periodic behavior to analyze.

Definition 4.1. Let p be a periodic point of prime peried n. The point p is
hyperbolic if |(f*)'(p)| # 1. The number (f*)(p) is called the multiplier of
the periodic point.

Example 4.2. Consider the diffeomorphism f(z) = 1(z® + 2). There are
3 fixed points: z = 0,1, and —1. Note that f(0) = 1/2 and f'(+1) = 2.
Hence each fixed point is hyperbolic. The graph and phase portrait of f(x)
are depicted in Fig. 4.1.

Example 4.3. Let f(z) = —3(23 + ). 0 is a hyperbolic fixed point,
with f'(0) = —3. The points 1 now lie on a periodic orbit of period 2.
We compute (£2)(£1) = f(1) - f/(~1) = 4 by the chain rule. Hence this
periodic point is hyperbolic, and the phase portrait is depicted in Fig. 4.2.
Note that points in the interval {—1,1) spiral toward 0 and away from 1.

We observe that, in the above two examples, we have |f'(8)] < 1 and
that points close to 0 are forward asymptotic to 0. This situation occurs
often: '

Proposition 4.4. Let p be o hyperbolic fized point with |f'(p)] < 1. Then
there is an open interval U about p such that if z € U, then

lim f*(z) =p.
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Fig. 4.1. The graph and phase portraits of
@) = 3(=" +2).

Proof. Since f is C!, there is € > 0 such that |f(2)] < A < 1forz €
[p—¢,p+¢]. By the Mean Value Theorem
|f() —pl=1f(2) - flp)| S Alz —p| < |z —pl < e
Hence f(z) is contained in [p - &, p + €] and, in fact, is closer to p than = is.
Via the same argument
|F*(=) — pl < A%z — pf
so that f*(z) — pas n — oo.
q.e.d.
Remarks.

1. It follows that the interval [p — ¢,p + €] is contained in the stable set
assoclated to p, W?(p).

2. A similar result is true for hyperbolic periodic points of period n. In
this case, we get an open inlerval U about p which is mapped inside itself
by f*. Of course, the assumption in this case is that |(f*)'(p)| < 1.

Definition 4.5. Let p be a hyperbolic periodic point of period n with

[(f*Y(p)| < 1. The point p is called an attracting periodic point (an attrac-
tor) or a sink.
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Fig. 4.2. The graph and phase portraits of
f(z) = ~3(=* +a).

Attracting periodic points of period n thus have neighborhoods which
are mapped inside themselves by f™. Such a neighborhood is called the local
stable set and is denoted by W{,.. We may actually distinguish three different
types of attracting fixed points, namely those where f'(p) = 0, 0 < fllp) <1,
and —1 < f'(p) < 0. The behavior near these types of fixed poinis is
illustrated in Fig. 4.3.

The behavior of a map near periodic points where the derivative is larger
than one in absolute value is quite different from that of sinks.

Proposition 4.6. Let p be a hyperbolic fized point with |f'(p)l > 1. Then
there is an open interval U of p such that, if © € U, z # p, then there exisls
k> 0 such that f*(z) ¢ U.

The proof is similar to the proof of the preceding.proposition and is
therefore left as an exercise. Graphically, the result is quite clear; see Fig. 4.4.

Definition 4.7. A fixed point p with |f'(p)] > 1 is called a repelling fixed
point (a repellor) or source. The neighborhood described in the Proposition
is called the local unstable set and denoted Wi,.
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Fig.. 4.8. The phase portraits near an attracting fixed point p.
in case 2. 0 < f'(p) <1, b. f{p} =0, c. -1 < f'(p) < 0.

We remark that periodic points of period n exhibit similar behavior when

(£ () > 1.

/

N O Vo' P
i
Fig. 4.4. The phase portraits near a repelling fixed point.

Hyperbolic periodic points therefore have local behavior which is gov-
err}cd.b}: the derivative at the periodic point. This is not true when the
point is indifferent or non-hyperbolic, as the following example shows.

Example 4.8. Bach of the maps in Fig. 4.5 satisfy F{0) =0 and f'(0) = 1,
but eg.ch have vastly different phase portraits near 0. In a., the map f(z) =
z + z° has a weakly repelling fixed point at 0. In b., the map f(z) = — z°
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Fig. 4.5. The phase portraits of a. f(z) =z + 2,
b. fz)=z—2% ¢ flz) =2+ z?.

has a weekly attracting fixed point at 0. In c., the map f(z) = =z + z? is
weakly repelling from the right but weakly attracting from the left.

Most maps have only hyperbolic periodic points, as we shall see later.
However, non-hyperbolic periodic points often occur in families of maps.
When this happens, the periodic point structure often undergoes a bifurca-
tion. We will deal with bifurcation theory more extensively later, but for
now we give several examples.

Example 4.9. Consider the family of quadratic functions Qc(z) = z? + ¢,
where ¢ is a parameter. The graphs of Q. assume three different positions
relative to the diagonal depending upon whether ¢ > 1/4, ¢ = 1/4, 0r ¢ <
1/4. See Fig. 4.6. Note that Q. has no fixed points for ¢ > 1/4. When
¢ = 1/4, Q. has a unique non-hyperbolic fixed point at z = 1/2. And when
¢ < 1/4, Q. has a pair of fixed points, one attracting and one repelling. Thus
the phase portrait of Q. changes as ¢ decreases through 1/4. This change is
an example of a bifurcation.

Example 4.10. let F,(z) = pz(l — =) with p > 1. F, has two fixed
points: one at 0 and the other at p, = (g — 1)/p. Note that FL(0) = g
and FL(p#) =2 — p. Hence 0 is a repelling fixed point for z > 1 and p, is
attracting for 1 < pu < 3. When p = 3, Fi(p,) = —1. We sketch the graphs
of F}f for p near 3. See Fig. 4.7. Note that 2 new fixed points for Fﬁ appear
as p increases through 3. These are new periodic points of period 2. Another
bifurcation has occurred: this time we have a change in Pery(F).

This quadratic family actually exhibits many of the phenomena that are
crucial in the general theory. The next section is devoted entirely to this
function.
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Fig. 4.6. The graphs of Qc(z) = 2* + ¢ frr ¢ > 1/4,

Exercises

c=1/4,and ¢ < 1/4.

1. Find all periodic points for each of the following maps and classify then
as atiracting, repelling, or neither. Sketch the phase portraits.

a. flz) =z —2?
b, f(z) =2(z — 2?)
c. flz)=2%— %m

d. f(z)=2%—=2
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Fig. 4.7. The graphs of F2(z) where
Fy(z) = pz(l - z) for
4 < 3,p=3,and p>3.

e. S(z) = §sin(x)

f. S(z) = sin(z)

g. B(z)=e""

h. E(z) = €°

i, A(z) = arctanz

j. A(z) = Tarctan®
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k. A(z) = % arctanz

2. Discuss the bifurcations which occur in the following families of maps
for the indicated parameter value
. Sy(z) = Asinz, A=1
. Ex{z) = Xe?, A= 1/e

Ex(z) = Ae®, A= -—e
CQe(z) =2 +e, = -3/4

Fu(z) = pa(l —z), p=1

Ay(z) = darctanz, A=1
g. Ay{z) = Aarctanz, A=-1
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3. Suppose f is a diffeomorphism. Prove that all hyperbolic periodic points
are isolated.

4. Show via an example that hyperbolic periodic points need not be iso-
lated.

5. Find an example of a C! diffeomorphism with a non-hyperbolic fixed
point which is an accumulation point of other hyperbdlic fixed points.

6. Discuss the dynamics of the family f,(z) = 2° — az for —o0 < a < 1.
Find all parameter values where bifurcations occur. Describe how the phase
portrait of f, changes at these points.

7. Consider the linear maps fi(2) = kz. Show that there are four open sets
of parameters for which the phase portraits of fj, are similar. The exceptional
cases are k =0, +1.

§1.5 AN EXAMPLE: THE QUADRATIC FAMILY

In this section, we will continue the discussion of the quadratic family
Fu(z) = pz(l — ). Actually, we will return to this example repeatedly
throughout the remainder of this chapter, since it illustrates many of the
most important phenomena that occur in dynamical systems.
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The map F is piecewise linear on [1/3,2/3] and [2/3,1]. Moreover,
F(%) =0, F(1) = }, and F is continuous. . : _

Note that I' maps [0,3] into [,1] and vice versa. Also notc that if
¢ € [},2] and = is not the fixed point, then there exists n so thz‘a,t F*(z) €
[0,3)U [£,1]. This implies that there are no other F-periodic points in (3,2).
Exercise 7 shows that if © is a periodic point of period n for " f, then a:/;3 is
periodic of period 2n for F'. On the other hand, if y is I'-periodic then either
y or F(y) lies in [0, 3] and Exercise 9 shows that 3y or 3F(y) is f-periodic.
Thus to produce a map with period 10 but not period 6, we need only double
the graph of a function with period 5 but not period 3.

§1.11 THE SCHWARZIAN DERIVATIVE

~In this section, we describe a tool first introduced into the study of one-
dimensional dynamical systems by Singer in 1978. This is the Schwarzian
derivative. Actually, the Schwarzian derivative plays an important role in
complex. analysis, where i} is used as a criterion for a complex function to
be a linear fractional iransformation. In one-dimensional dynamics, the
Schwarzian derivative is a valuable tool for a number of reasons. In this
section, we will show how it may be used to establish an upper bound on
ke number of attracting periodic orbits that certain maps may have. We
vill also use it to prove that other maps have an entire interval on which the
map is chaotic. Later, in §§ 17-19, the Schwarzian derivative will play an
mportant role in our discussion of how families of maps like the quadratic
amily make the transition from simple to chaotic dynamics.

As a final remark, we must emphasize that Sarkovskii’s Theorem is very
definitely only a one-dimensional result. There is no higher dimensional
analogue of this result. In fact, the Theorem does not even hold on the
circle. For example, the map which rotates all points on the circle by 120°
makes all points periodic with period three. There are no other periods
whatsoever.

Exercises

1. Suppose Ag, Aj,..., Ay are closed intervals and f(4;) D Aiy fori =
0,...,n— 1. Prove that there exists a point = € Ag such that f*(z) € A; for
each t. .

2. Prove that il f has period p - 2™ with p odd, then f has period ¢-27
with g odd, ¢ > p.

3. Prove that if f has period p-2™ with p odd, then f has period 2t < m.

Definition 11.1 The Schwarzian derivative of a function f at z is

_ F(2) _§ F(z)\?
Sf(z) = Fie) 2(},,(3)) .

. For example, if F,(z) = pz(1 — ) is our quadratic model mapping, then
SF(z) = —6/(1 — 22)%, so that SF,(z) < 0 for all = (even = = 1/2, the
~eritical point, at which SF,(z) = —o0).

4. Prove that if f has period p - 2™ with p odd, then f has period q-2"
with ¢ even.

For us, functions with negative Schwarzian derivative will be most im-
- portant. Besides the quadratic map, many other functions have negative
Schwarzian derivatives. For example, S(e*) = ~1/2 and S(sinz) = -1 —
%(ta.n2 z) < 0. Many polynomials have this property, as the following propo-
ition shows.

5. Construct a piecewise linear map with period 2n - 1.

6. Give a formula for F(z) in terms of f(z), where F{z) is the double of
f(=). :
7. Prove that F(z), the double of f(z), has a periodic point of period 2n

t iffzh -period 7.
at o/3 ifl & has f-perio Proposition 11.2. Let P(z) be a polynomial. If all of the roots of P"(:c)

8. Construct a map that has periodic points of period 27 for j < £ but not are real and distinct, then SP < 0,

period 2¢.
9. Prove that if Fz), the double of f(z), has a periodic point p that is not

fixed, then either p or F(p) Yies in [0,1]. Prove that, in this case, cither 3p
or 3F(p) is a periodic point for f.

Proof. Suppose
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with the a; distinct and real. Then we have
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Hence we have

1 3/ 1 2

SP(z) = —"'( )

B = T —w 2\

) - ()
= —— — < 0.

2_?;1 T -~ a; ng"‘“j

g.e.d.
One of the most important properties of functions which have negative

Schwarzian derivative is the fact that this property is preserved under com-

position.
Proposition 11.3. Suppese Sf < 0 and Sy < 0. Then S(f o_q‘)' < O
Proef. Using the chain rule, one computes that ‘
(fog)'(z) = f'(g()) - (g'(2))* + f'(g(=)) - g"(=)
and
(f 09)"(z) = f"(g(=)) - (¢'(2))® + 3f"(9(2)} - ¢"(2) - ¢'(=)
+f(g(=)) - ¢"(=)-
It follows that

S(f o g)(=) = Sf(g(=)) - (g'(=))* + Sg(=)

so that S(f o g)(z) < 0.
g.e.d.

Of primary importance for us is the immediate consequence that, if §f <
0, then Sf" < 0 for all n > 1. The assumption that §f < 0 has surprising
implications for the dynamics of a one-dimensional map. One of the major
results of this section is
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Theorem 11.4. Suppose Sf < 0 ( Sf(z) = —co is allowed.) Suppose f has
n critical points. Then f has at most n + 2 attracting periodic orbits.

Remarks.

1. The quadratic function I (2) = pz(1—~z) has one critical point {z = 1/2).
Hence, for each p there exists af most three attracting periodic orbits. There
may, of course, be none, as is the case for u > 2 4 /5. Later we will see
that the number of attracting periodic orbits can be reduced to at most one.
Since, for large 1, the map F, has infinitely many periodic orbits, it is indeed
a surprise that at most one may be attracting.

2. This presents a computational dilemma. Suppose F, has an attracting
periodic cycle of period three. By Sarkovskii’s Theorem, F,, must have pe-
riodic points of all other periods, but none of them can be attracting. On
a computer, only atiracting periodic points are “visible,” so this raises the
question: where are all of the other periodic points in this case? We will
return to this question in §1.13.

3. The proofs below extend to non-hyperbolic periodic points as well. Con-
sequently, the quadratic map F, has at most one periodic orbit which is net
repelling.

To prove Theorem 11.4, we first need several lemmas.

Lemma 11.5. If Sf <0, then f'(z) cannot have a positive local minimum
or @ negative local mazimum.

Proof. Suppose 2 is a critical point of f'(z),1.e., f'(z) = 0. Since Sf(=zo) <
0, we have f'"(z9)/f'(=p) < 0 s0 that f™(xy) and f'{zo) have opposite signs.
g.e.d.

It follows that, between any two successive critical points of f', the graph
of f'(z} must cross the z-axis. In particular, there must be a critical point
for f between these two points.

Lemma 11.6. If f(=) has finitely many critical points, then so does ™).

Proof. For any ¢, f~(c) is a finite set of points, since, between any two
preimages of ¢, there must be at least one critical point of f. It follows easily
that f7™ (e} = {z|f™(=) = c} is also a finite set.

Now suppose (f™)(z) = 0. By the Chain Rule, we have

m~]
(F™Y(=) = I £(5(=))-

i=0



