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which is the x-coordinate of the point where the tangent line at
(x1, f{x))) meets the x-axis, regarding x, as the next approximation,
and so on. See Fig. 9(@). As Fig. 9(b), shows, the process may go
badly wrong! We shall not attempt very much theory here (see,
however, Sections 3.5-3.9 below), but rather illustrate the method

with a variety of examples.
Given f and the initial guess x, we define

Sixi)
=y et 2
e = g @
fork=0,1,2,3,.. ., s0longasf"(x) =0 (and it’s very unlikely to
be exactly 0), and consider the sequence of ‘approximations’, or
iterates as we shall call them, xo, x), x5, . . . .

3.1 Program: Newton—Raphson -

14 INPUT Xg@ :

20 LETX =Xg

3 Work out f{x) = @ and f"(x) = b from explicit formulae for

Sand its derivative f*

4 LET X=X~ A/B L

58 PRINT X

68 GOTO 3¢
Ideally insert a line 55 which makes the micro pause before going on
to the next iteration. If you can define functions in the program, say

FNF(X) for fand FND(X) for /*, then you can omit line 3@ and have

5 DEF FNF(X) = formula for f{x)
6 DEF FND(X) = formula for f'(x)
4¢ LET X = X — FNF(X)/FND(X)

3.2 Exercise
The graph in Fig. 9(b) may remind you of the inverse tangent graph

y=arctan x (also written tan™' x). For y=arc tan x we have
S'(x)=1/(1 + x?), so line 46 of the program becomes

46 LET X = X — (1 + X+X)*ATNQ)

Try letting x, equal: (a) 1; (5) 2; (¢) 1.3; (d) 1.4; (e) 1.391; (/) 1.392.
The solution sought is of course x = (0. You should find that (a), (c)
and {e) are "‘good’ vahues for x,, and do indeed give the solution x = 0
after a few iterations, but (), (d) and () are ‘bad’ values and go off

to infinity in the manner of Fig, 9(b).
What is the ‘critical’ value of x, which separates the good from the

bad? It is the value of x, which makes x, = x, ~ (I + x®)(arc tan Xo)
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precisely equal to —x,, so that a second iteration merely sends us
back to xo. (Compare Exercise 4.2 below.) That is, the critical value
is a solution of arc tan x = 2x/(1 + x%). Now refer back to Exercise
2.9. (Of course, you could solve #iis eciuation by Newton-
Raphson ... .)

3.3 Exercise
What happens if the Newton—Raphson method is used to seek the
root x =0 of f{x) =0 where (a) flx)=x"7 (b) fix)=x"> (c)
Ax) = x**? In each case x;,, can be expressed very simply in terms
of x,, making it relatively easy to spot what will happen. Sketches of
the three curves y = f{x) also help.

Note that if, say, x'/ is to be evaluated on the micro we have to do
better than writing X1 (3), for this will be rejected when x < 0 (also
possibly for x =0). (The micro tries to work out {In x)/3, and
naturally fails because In x is undefined for x < 0.) It is necessary to
do something like

sign (x) {abs (x))'/?

where sign(x)is +1forx>0, — for x <0 and 0 for x = 0, while
abs (x) = | x| is the absolute value of x.

Try fix) =1 + x* (you may be able to write this in BASIC as
1+ (X*X)1(3), since x2 = 0), which gives no solutions for Jix) = 0.
You should find that the iterates x; eventually oscillate between
about x = =+ 5.19615. Solve x — f{x)/f’(x) = —x to find the exact
valuel

Inthiscase, x..; = —4x, — 3x§/% If x, approaches a limit / as k — o , then
this equation implies /= ~ 3/~ /%, which has only the solution /= 0.
However, as you will discover by taking various values for x,, there is no
starting value x, which makes x,—0 as k — oo, (In fact, if |x,| < 1, then
1| > |2].)

For flx)=1+x", where $<p<1-and p is a fraction with an odd

denominator, the x, eventually oscillate between +=(@p -1~ Try
7=18/19,

3.4 Exercise
Try secking the root x = 0 of 1 — e ™** = 0. Thus x s here replaced by
x = (1 —e™")/(2x ™) in line 4§ of Program 3.1. The shape of the
graph y=1-e" is suggested in Fig. 10. In BASIC,
Y =1-EXP(—X«X). Try (@) xo= 1, (5) xo = 1.6, (¢) xp = 1.528.
Show that the critical value of x, separating good values of xq (for
which x; —0) from bad values (for which x,-0) is a solution of
4x* + 1 = e, Find this critical value using the method of bisection.
Note that if xq is much bigger than the critical value (e.g. xo=2)
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then the Newton—Raphson method gives numbers x, which are
wildly divergent: the iterates tend to infinity so fast that your
computer will probably complain about dividing by zero after a
couple of iterations. Also the approximations approach zero pain-
fully slowly for say x, = 1.5. Why is this?

In the next few items we take the opportunity of making some slightly

more technical observations on Newton-Raphson, and the limitations of
the method,

3.5 Exercise: Newton—Raphson can deceive ys

Suppose the iterates x, approach a limit/as k — o _ Jg 1) = 0?If not, we are
deceived by the method. Here is a wild example to show that deceit is
possible, Let

Axy=1-2xsin(1/x) forx= 0,
A0 =1.

See Fig. 1] for a rough sketch. In fact f'is continuous for all x, and f'(x)
exists for all x = 0 (compare e.g. Spivak (1980) pp. 80, 146).

Take xy = 1/(27), so that fxo) = 1. Verify that x, = | /@4m), x, = 1/(847),
and in general x, = 1/(2%*'7). Thus certainly x, — 0, but equally certainly
S0 = 0. Verify also that £ "(x) = 2*277, 50 the derivative — o as k= oo,
Try programming this, and starting with x, = 1/(27). Try also x, =0.5.
Bxpiain what you see.

3.6 A sufficient condition Jor Newton—Raphson to work
Suppose x, — { and If'(x}] < M for some constant M and all x sufficiently
close to /. Then from

(Hiwr — X" (%) = flxe)

{which is the definition of Xys 1IN terms of x,), it follows that SAx) =0, singe
the left-hand side —0. Thus Sx) = A =050 ! is a solution to S =o0.
(Why does this not contradict Exercise 3.57)

3.7 Do the x, approach a limit?

How can we tell for sure that the iterates x, are approaching a limit /7 The
various numbers x, appearing on the screen stop changing after a while;
what guarantee is there that they won’t start changing again if we wait




Equations

patiently? Actually none at all, though for ‘reasonable’ functions fthis won't
happen. What you can do is to check on the value of J0a) when x, has
stopped changing, to see ifit is nearly zero. Or you can evaluate % — €)and
Sx: + €) for e around 10-7 to see if there is a change of sign, indicating a
solution which will be X, to six decimal places or so.

Note the contrast with the bisection method, where we can be certain,

ter a definite number of iterations, that we have located a solution to say
six decimal places.

3.8 Another wild example
This is based on Exercise 3.5, and shows that we can be deceived into
believing that x, —/, We attach a parabola to part of the curve in Exercise
3.5 (Fig. 12). Fix a whole number # and define ¢ = 1/(2n + 1)ar. Let

i1 -2xsin(l/x) forxze
j(x)q{a(xz+3x+2) forx<e¢

where a = 1 /(& + 3¢ + 2). Then fis continuous for all x; with more trouble

we could make a curve that joined up more smoothly at x = ¢, but we do not
need to do that,

(You will need to split

rnatives, according to whether x < e

3.9 When wil Newton—Raphson locate g solution?

Suppose that f7) = 0. What conditions on x,, / and S will guarantee that
Xe—>lask— w? A thorough treatment of this question is to be found in
books on Numerical Analysis (for example, Young and Gregory (1972),
pp. 132, 146); here we indicate a proof of the following fact; Suppose that f,
S andf” ( = second derivative of f) are continuous for all x near |, and D=0,
S = 0. Then, provided x, is sufficiently close 1o I, we have x; — /a5 jc —» oo,

In fact, let g(x) = x =)/, so &(x)=x,,, and g{) = /. We have
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g'(x} = f) /" (x)/(f'(x))*. Since (/) # 0 and f” is continuous, there exists
¢ > 0with |f"(x)| = ¢ for all x sufficiently close to /. Further, for x sufficiently
close to /, |/(x)f"(x)| < $¢* since f{l)=0 and f and /" are continuous. So
|&'(x)| < § for all x close enough to /. By the Mean Value Theorem (see any
book on calculus, e.g. Spivak (1980), p. 179),
X1 = 1= glx) = g() = (xe — Dg' ()

for some x between x, and /. Hence, provided x; is close enough to /,
|51 =€ 3lx =], o=l <ilx, — <4~ 1, and so on. Generally,
I, — 1] < (1/2%)]x0 ~ 1], 50 as k — e, we have x, — /.

The example in Exercise 3.5 above fails because /"(0) does not even exist;
also /" is not continuous at x = 0.

The above result assumes /" (/) # 0, i.e. /is a simple solution of fx)=0. See
Young and Gregory (1972), p. 146 for further details.

We now turn to examples where the Newton—Raphson method
can be (more or less) successfully applied to the solution of equa-
tions. For the most part, the examples involve polynomial functions
J: and the reader may now wish to proceed straight to Exercise
3.12, using a program such as Program 3.1 above. We pause,
however, to consider the problem of efficiently evaluating a given
polynomial,

3.10 Evaluation of polynomials

Let flx)=ap+ a1 x+ax*+. .. +a,x" (12 1) be a polynomial,
which we want to evaluate for a given value of x. Thus we want a
program which accepts x, n, a, ..., a, as inputs and which
calculates f{x). The numbers ay, . . ., a, will be stored as an array,
and because some micros only allow arrays to be indexed from 1
onwards (rather than 0), we write a; as an array element AAJ+ 1)
for j=0, 1, ..., n. The array AA has dimension » + 1, that is
contains # + 1 entries.

=1/(2n + 1)z
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Brute force will evaluate fx) by 1 +2+ ...+ (n — 1) multipli-
cations followed by n additions, a total of $n(n + 1) operations.
Suppose, however, that we work out in succession

by = ayx, ba = x(b1 + @,-1), by = x(bz + a,_2),

and so on, down to b,=x(b,-, +a;) and finally b,., =5, + a.
Then a little thought will convince you that b,.., = f{x), and working
out b, involves only r additions and » multiplications, which is a
great improvement if » is large.

3.11 Program: Evaluation
1 INPUT N
28 DIM AA=N+1
3 FORI=1TON<+1
4¢ INPUT AA(J)
58 NEXT !
6@ INPUT X
76 LET F = AA(N + 1)#X
8% IF N =1 THEN GOTO 128
9% FORI=1TON-1
16 LET F = X*(F + AANN — T + 1))
11§ NEXTJ
126 LET F=F + AA(D)
138 PRINTF

The final value of F in the program is f{x).
When both f{x) and f'(x) are needed where

f(x)=a +2ax+. .. +na,x""",

then we could continue:

149 LETFl =§

15¢ IF N =1 THEN GOTO 214

168 LET F1 = N*AA(N + D=*X

176 IF N =2 THEN GOTO 218

183 FORJ=1TON-2

198 LET F1=X#*(F1 + (N - D)*xAAN-TJ+ 1))
208 NEXT]J

216 LETF1 =F1 + AA(2)

The final value of F1 in the program is then f'{x).
Lastly, we can go on to perform the Newton-Raphson jteratio
supposing the x in line 6 is the starting value x.
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g X =X—-F/Fl

318 PRINT X

328 GOTO 74
As usual, a line 315 causing the micro to pause until a key is pressed
will make the iteration easier to follow.

At any stage it is possible to check the value of flx), to see
whether it is small, or to check f{x — €} and flx -+ &) for small ¢
{around 1077) to see whether there is a change of sign. General
theory predicts that once we are close enough to a root iteration
will {(subject to some mild conditions such as those in Section 3.9)

bring us even closer.

3.12 Exercise: Quadratic equations
Take f{x) = x* — y, for various values y > 0, to find approximations

to v ¥

Take fix) = x* — 3x + 2, with solutions to f{x) = 0 given by x =1
and x = 2. Check experimentally that, if x, > 3 (the half-way point
between the roots), then x, ~>2 and, if xo <2, then x; ~>1. What
happens if x, = 3?

Try some other gquadratic equations with real roots and check by
experiment that, if x, is greater than the average of the two rdots (i.e.
Xxo > —b/2for x> + bx + ¢ = 0), then x, converges to the larger root;
if less than the average then x; converges to the smaller root. Sketch
diagrams of quadratic curves and the Newton-Raphson iteration to

make this plausible,

3.13 Exercise: Quadratic equations with complex roots
Take x* + x + 1 = 0, which has complex roots. It is hardly likely that
x; will get close to them, but try various values of x, (not equal to

— 3, which makes f"(xo) = 0), and verify experimentally that the
numbers xj, Xz, X3, ... always jump about in a rather random-
looking fashion. More of this strange phenomenon later —see §6. Try

also 40x% — 40x + 11 = 0.

3.14 Exercise: Sensitivity to the starting value
A good example with which to illustrate the sensitivity of the
Newton-Raphson method to the starting value x, is the equation
2 sin x — x = 0, which has two non-zero solutions and the solution
x = 0. Try various x, very close to 1 and on each side of 1 and notice
how the iterates may diverge, or converge to any of the three
solutions. According to Mackie and Scott (1985) the behaviour of
the iterates depends not only on the value of x, but also on the

machine being used!
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4.1 Exercise: A simple cubic
Let f{x) = x(x — 1)(x — 2) = x* — 3x% + 2x. Start with various values

for x, and see when the corresponding approximations x; approach
0, when 1 and when 2. Is your result reasonable from a diagram?

4,2 Exercise: Alternating iterates
Let f{x) = x* — 2x + 2 and xo = 0. You should find that the iterates

x;. alternate between 0 and 1. Find other cubic equations where the
iterates alternate a, b, @ b,.... (Hintt you need
Aa)/f (@) = — Ab)/f'(b) where f=0 is the cubic equation.) Try
taking Xo just > 0 or just <0 in the above eguation.

Try 2x° —9x% + 1lx—=3=0, xp=1.

4.3 Exercise: Jumping iterates
Let fix) = x* —~ 9x* + x — 1. With xo = 1, you will find the iterates
jump about near 0. In fact there are two complex roots quite close to

0; there is also a real root around 8.9.

4.4 A volume problem
Consider a solid hemisphere, of radius r, and a plane pérallel to the
base of the hemisphere, at height / above the base (Fig. 13). The
volume below the plane is then m2h — 37>, (If you know how to
find volumes by integration, then you can check this.) What must 7
be in order to cut the hemisphere into two parts of equal volume?
This requires
a2 h — L3 = § (volume of sphere, radius r)

L.

il

Hence x = h/r satisfies x> —3x+1=0. Of course, 0<x<l.In
fact, this equation has three real roots; find approximate values for
all of them by the Newton-Raphson method.

4.5 More volume problems
There are many variants of Section 4.4. For example, if a sphere of

radius r stands on a horizontal surface then a horizontal plane at a
height # above the surface cuts off a volume 7#3(r — +h) below itsell.
(Deduce this from Section 4.4.) Here 0 < h < 2r, of course. What
should & be so that, for example, this volume is 2 that of the sphere?
This gives x = h/r satisfying x* — 3x* + 3= 0. Again this equation
has three real roots; the answer to the problem is the one satisfying

1 < x < 2. Find it by means of Program 3.1.
This also answers the question of the depth /2 to which a spherical -




