13¢0 NEXTI

14 LET C=X: PRINTC

158 INPUT DELTA

166 FORI=1TON

17§ LET X = XL + I#(XU — XL)/N

184 FORI=1TO 24

198 LET X = FNF(X)

26 IF ABS(X — C) < DELTA THEN put a dotat {x, xg): draw
a line to (x, xe -+ j(x, — xg)/50): GOTO 228

21§ NEXT]J

2280 NEXT 1

23¢ DEF FNF(X) = (X+X*X + 6)/7

- Here lines 1f@-14f allow the user to input a value of x near the
. proposed fixed point ¢ and compute a value for ¢. Since it is essential
to obtain a reasonabiy acturate value for ¢, the number of iterations
at line 114 may need to be increased. Then at line 15§ we input a

positive number 8 which defines the target interval 7 = (¢ — 8, ¢ + 8). -
Finally, for each initial value x, = x used in the earlier plotting of .

y = flx), it calculates M ( = 20) terms of the sequence x, = f(x). At
line 200 the term x,, is tested to see whether it lies inside the target
interval and, if so, a vertical line segment is drawn, whose height
indicates how many iterations were required. Note that x, = y, and
Xy = ¥y as in Program 3.1. )

6.3 Exercises
(¢) Use Program 6.2 to plot the intervals of attraction for:
@ A =03x+2/(x+2), c¢=2,6§=00L

(i) flx)=2.5x(1 —x), ¢=0.6,56=00I,

(i) f(x) = (V2)*, c=2,5=00L
(/) Repeal (a) with various diffcrent values of 4.
(¢) Try to use Program 6.2 when ¢ is some indifferent fixed point.

Why do you run into difficulties?

Warning For some functions, such as f{x) = (V2)*, repeated
iteration with certain values of x can lead to numbers which are too
large for the computer to handle. In this case you may like to include

a line such as
195 IF ABS(X) > 5¢ THEN GOTO 224

so that such values of x are excluded from consideration and the
program can continue. The particular number 50 used in line 195
will of course depend on the [unction, the bounds x;, x,, elc.

§7 If you attempted Exercise 3.2, then you may have noliced that
Conjugate ceriain iteration sequences display remarkably similar behaviour
Sunctions  despite being defined by entirely dilferent [unctions. Consider, for

example, the sequences:
X1 = xn('] - xn)s 1= Os I) 2’ L] (I)
where xo = 3, and
xn-&-I:xJzt-'_%: ’I':O, ]:23-'-1 (2)
where xo = 0. See Fig. 19. It appears that Fig. 19(5) can be obtained
from Fig. 19(a) by rotating about the origin through 180° and then
translating (0, 0) to (3, 3) (or, what is equivalent, rotating about the
point (4, 3) through 180°). In fact this geometric effect is achieved by
the change of variable:
Xx= —u- %,
and if we write X, = — #, + 3, X,y = -~ 4t + 3, then Equation (1)
becomes
= Upyy T+ % = ( — Uy l?.)(% + ”u)
= 2
=g T Uy,
ie.
te = iy + 7,
which is precisely Equation (2). Notice also that ug= — xo + =0,
so that the initial terms do correspond. It follows that any known
information about sequende {1} can be applied to sequence (2), by
using this change of variable.
Fig, 19
Ya
y=x
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I
i
I
]
1
1 >
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Fig. 20

We can express this change of variable in function notation as
follows. First write Equation (1) in the form

Kpi | =ﬂ-xn)s n=01, 2: BRI (3)
where f(x) = x(1 — x) and x4 = 3. Then pul x = ¢{u), where
Mu) =~ u-+ 3. @

Now Equation {3) can be written as

Hitwr ) =AMu), n=0,1,2,...,

ie.
Uy ™ d)_ l(f((f)(t[")))
= g(u,),
where
g=¢"'ofog ()

Here ¢~ ' is the inverse function of ¢. Schematically we have Fig. 20,
in which x, = (11}, X041 = K11 1). In our example

x=-u+3 implies u= —x+3,
so that the inverse of the function ¢ in (4) is
¢~ (x¥)=—x+35.
Hence, by Equation (5)

8y = — flghw) + 3

= (1 — Gu)) + 3
—(—u+HE+uy+3i
=2 4+ 4

Il

as expected.
Whenever two functions fand g are related by a formula -

g=¢ 'ofog. _
in which ¢is a I-1 correspondence with both ¢and ¢~ continuous,
we say thal fand g are conjugate to each other. The two functions f

¢—1
® Xt - Uorr®.
f g
® X, . u, e
x-variables é u-variables

§8
Linear and
Mdbius sequences

and g can then be considered equivalent, as far as iteration is
concerned. Whatever behaviour is exhibited by a sequence

Xnt1 =_/(xn), == 0, 1, 2, oe oy
will also be exhibited by
Uy =gluy), n=0,1,2,..

where uy = ¢~ '(x,), and we say thal the sequence u, is conjugate Lo
the sequence x,,.

In the following sections we shall see several examples where the
consideration of a conjugate sequence greatly simplifies the under-
standing of a particular ileration sequence. Sometimes it is even
possible to find a formula for x, by finding a suitable conjugate
sequence which can itselfl be solved explicitly. (See also Chapler 2,
Section 6.10.)

7.1 Exercises
(a) Find an explicit solution for the iteration sequence
Xu+1 =xf2b n= 03 1: 2: LECIRE

with initial term x;.
{b) Consider the sequence

— 1 —
Knel =Xy +2xm n= 0: I: 2: L]

with initial term x,. By using the change of variables x = u — 1
show that

x”=(xo__1)2"+1’ n=0,1,2,....

7.2 Exercise
Suppose that f, g are conjugate functions with

g=o¢"lofogh

Show that if ¢ Is a fixed point of /, then ¢~ '(c) is a fixed point of g.

In §2 and §3 you investigated the behaviour of various linear
sequences of the form

Xppr=ax,+b, n=0,1,2,.., (1)

and you should have found that the behaviour of such sequences
usually depends on the value of a or {ilf a= 1) on the value of b,
rather than on the initial term xp. For example, if [a] < 1, then the



\s

Fig. 21

sequence (1} 18 always convergenl. lias can easily be explained
graphically since, if |a] < I then: .
(@) y=ax+b, crosses y=x at a unique fixed point ¢ of
Jx) =ax-- b, given by solving ax+ b =x, which gives
c=—blla— 1)

(b) the derivative of fat this fixed point ¢ is equal to &, 'md s0

the fixed point is attracting. See Fig, 21.
Actually we can do rather better than this. The method of conjugate
functions can be used in this case to find an explicit formula for x,.
We make the change of variables

x=u—bfla~-1), a=l,

which takes the fixed poinl ¢ = ~ b/{a — 1) of f to u = 0. Substitu-
tion in Equation (1} gives

b
Upat — —a(u,,—i)-i-b, n=0,1,2,...
a—1 -1

which reduces after cancellation to

Uppr=aty,, n=01,2, ..., (2)
The explicit solution to (2} is

,=a"uy, n=0,1,2 ...,

which leads to

b ( b
Xyt ——F=qg" Xp + ’
a-1 a—1

ie.
a’—1
Xy=da"xg+ b ( ) . &)
a—1
yEXx ¥ v=x
/yfmax-lb b =

Xg

O pom— ————

fal N a1 THY w1 & asly

This explicit formula for x, means that we need no help from th
micro in order fully to explain the behaviour of sequences of th
form (I). For example, it is clear that if [a| <1, then " =0 a
n—> o, and so

Xp—>—bf{a—1) asn— o,

8.1 Exercises
(@) Use Formula (3) to determine the behaviour of x, if {a| > 1.
{(6) Ifa=1, then Formula (3) is not valid since a — 1 = 0. Deter
mine an explicit formula for x, in this case and deduce tha
Xy~ 0 as p—=oo, if b= 0. Explain this behaviou
graphically.

Before moving on to M&bius sequences, which are rather mor
complicated, we cannot resist including an application of Formul
(3} to the solution of a variant of a puzzle which we met in Chapter 1

8.2 Exercise: Monkey puzzie

(Compare Chapter 1, Exercise 2.2.) Five men and a monkey pathe;
coconuts all day and then fall asleep. During the night each mar
wakes in turn and, after giving one coconut to the monkey, he
removes and hides one fifth of the pile of coconuts for himsell. In the
morning the men divide the remainder equally among themselves
leaving exactly one coconut, which again goes to the monkey. Hown
many coconuts did they collect? (Hint: each man’s nocturnal activity
can be described mathematically as an application of the function

So) =4(x = 1),
to the number x of coconuts which they found.)
Remark For an account of the generalized problem with 7 men

and m monkeys, each of which receives p coconuts, see Melzak
(1973), p. 51.

In §2 and §3 you should also have investigated various Mdbius
sequences of the form

Xy = (ax, + B){exy +d), n=0,1,2,..., 4
where a, b, ¢, d are real numbers. Such a sequence reduces to a linear

sequence if ¢ = 0 and to a constant sequence if ad — be = 0. Thus we
assume that

c=0 and ad—bc = .

You should have discovered that the behaviour of such sequences is
apain wsually independent of the initial term x». For example. if
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IX, 2
x, 27

Xy = n=0,1,2,...,

then x,—=2 for almost all initial terms x,. See Fig. 22. The only
exceptions are xo = — 2 where f{x) = (3x + 2)/(x + 2} is not defined,
and x = — 1, which is a fixed point of /. How do we explain this
behaviour?

You should also have found, in Exercise 2.3, examples of M&bius
sequences which are divergent for every choice of initial term x. Can
this be explained?

Once again it turns out that there is an explicit formula for x,,
which can be used to confinmn the observations made earlier, We
invile you to derive this somewhat more complicated formula in the
following (extended) exercise.

8.3 Exercise
{¢) Determine the fixed points of
fx) = (ax+b)/(cx+d), ¢ =0, ad—be = 0.
Show that if
(a— d)* + 4bc >0,

then f has two distinct fixed points, a, 8 say.
(0 By considering the product

(ca+ d)cB+d)
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(2)

showthatca+d 2 Uand ¢ff+aq #= Y.
Use the facts that e = fla) and 8 = f{8) to verify the equatio

Xn4) — & Cﬁ+d Xy — & :
= f x, . !
Xpe1— B ((;a+d)(x,,—ﬁ)’ i, = A (

Deduce from (c) that

x,,—-af:(cﬁ+d) (xg——a), n=0,1,2,....

X, ~ B catdf \xog— g

Show that
o\ CB+d oo Catd
Flay=205 and PB=

and deduce that if |/'(a)] < I, then
X,~a asn—»ow,

for all real numbers x,, apart {from 8 and — d/e.
Show that il

(@ —dy* + 4bc =0,
then
(a + dy* = 4(ad — bc)
and deduce that f"{e) = 1. Show further that the change ¢
variables
u=1/(x - a)
transforms the equation of part (¢) into
Upyt =ty + 2¢/(a + d).

Deduce that 2, — * © as # — o, and hence that x, »a a
i —> o, in this case.
If

(a — d)* + 4bc <0,

then fhas no real fixed points and so x,, cannot be convergen!
However, if «, 8 denote the complex fixed points of f, the:
Equation (5) is valid. Prove that

cB+d
ca+d

= |

in this case, and hence describe the different possible ways i
which x, is divergent.



