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Fig. 20

We can express this change of variable in function notation as
follows. First write Equation {1) in the form

Xn =f(~xn , = 0: 1: 2: RRRERE} (3)
where f{x) = x(1 — x} and xo = 3. Then put x = ¢u), where
Py = ~u+1. 4)

Now Equation (3) can be written as

My ) =), n=0,1,2,...,

ie.
ey = 07 (A Pn)))
= glua),
where
g=¢ lofog. ‘ - (9)

Here ¢~ is the inverse function of ¢. Schematically we have Fig. 20,
in which x, = {1}, x,41 = #,..1). In our example

x=~y-+3 implies u=—x+1,
so that the inverse of the function ¢ in {4) is
o (xX)=—x+1.
Hence, by Equation (5)

gy = — fApu) + 3%

— u)(1 — P(u)) + 3
=—(~u+DE+uw)+3
=4+ 1

as expected.
Whenever two lunctions fand g are related by a formula

g=¢" o fod. _
in which ¢ is a 1-1 correspondence with both ¢and ¢~ continuous,
we say that fand g are conjugate to each other. The two functions f

-1
@
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and g can then be considered equivalent, as far as iteration is
concerned. Whatever behaviour is exhibited by a sequence

xr1+i=ﬂxil): ”:03 1323' T
will also be exhibited by
Uy =glt,), n=0,1,2,...,

where 1y = ¢~ !(xo), and we say that the sequence u, is conjugate to
the sequence x,,.

In the following sections we shall see several examples where the
consideration of a conjugale sequence greatly simplifies the under-
standing of a particular iteration sequence. Sometimes it is even
possible to find a formula for x, by finding a suitable conjugate
sequence which can itself be solved explicitly. (See also Chapter 2,
Section 6,10.)

7.1 Exercises
() Find an explicit solution for the iteration sequence
= X3 =0,1,2
X1 KXo, N 3 by by ey

with initial term x,.
(b) Consider the sequence

Xpe1=X24+2x,, n=0,1,2,...,

with initial term xo. By using the change of variablesx =un — 1
show that

xn=(x0_1)2"+ 1, H=0,1,2,....

7.2 Exercise
Suppose that f, g are conjugate functions with

g=d¢"lofod
Show that if ¢ is a fixed point of £, then ¢~ '(c) is a fixed point of g.

In §2 and §3 you investigated the behaviour of various linear
sequences of the form

Npwr=ax,+b, n=0,1,2,..., (1)

and you should have found that the behaviour of such sequences
usvally depends on the value of @ or (if @ = 1) on the value of 5,
rather than on the initial term xy. For example, if |a| < 1, then the
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Use the results of Exercise 8.3 to give a complete description of the
behaviour of the Mobius sequences which were investigated in Exer-
cise 2.3. Hence confirm that the continued fraction[1, 2, 2, . .. Jcon-
verges to v'2 (see §1).

The study of linear sequences and Mdbius sequences in the previous
section was rather straightforward because of the availability of
explicit solulions. For quadratic sequences of the general form

Xpo1=axp+bx,+¢, n=0,1,2,. ., (1}

no explicit solution is available. There are some quadratic sequences
for which an explicit solution can be found; for example the sequence

1 —
K | = Xipy ”"""01]:2:"-:
has the explicit solution
x,=x5, n=0,1,2, ..,

but usually other methods are required Lo determine the behaviour of
a quadratic sequence.

In this section we shall focus atlention on quadratic sequences of
the form

Xna | = Axn(l - -)::H)r n= 07 17 23 B (‘2)

which arise in population dynamics, as we described in §1. See Fig. 23.
Such sequences may seem much more special than (1), since there is
only one parameter, namely A, butin fact they are not all that special.
Whenever the function f{x)} = ax® + bx + ¢, which defines sequence
(1), has a real fixed point, the sequence (1) is actually conjugate toa
sequence of the form (2). This is the content of the following exercise.

9.1 Exercise

Suppose thatf{x) = ax® + bx + ¢,a # 0, has the fixed point eand that
f'(a) # 0. Prove that the sequence (1) is conjugate to sequence (2)

using the change of variable

(Zaa+b)
X= - *a— ut

the corresponding value of A is A = 2aa + b = f'(a).

9.2 A sysiemalic investigation
In Exercise 2.4 you calculated the sequence

Xy =Axl—x), n=0,1,2,..,

ittt brmmnamn s anmn S

T g bt e et =

Fig. 23

various initial values xp. This range of values of A is of particula
interest because for 0 < A < 4 the function f,, defined by

falx) = Ax(l — x)

maps the interval [0, 1] into itself. Indeed you can readily check tha
f takes its maximum value A/4 at the point x = 3 (Fig. 23).

You should have discovered that the behavicur of the sequence x
varies very greatly depending on the value of A, but for each fixed .
the behaviour is more or less independent of the initial term xy. Fo
example there are many values of A for which the sequence i
convergent and others for which it appears to converge to a p-cycl
(p > 1). The time has now come for a systematic investigation c
such sequences.

The program below takes a large number of values of A between
and 4 and plots each of the corresponding sequences x, (startin
from xo = 3) vertically above a horizontal A-axis. In order to detec
the eventual behaviour of x,, (where possible), only the terms xsq, X5
..+ X100 are plotted. Thus if x, is convergent, then a single poir,
should be plotied and, more generally, if x, converges to a p-cyck
then p points should be plotted.

9.3 Program: Lambda plot
I LET N=g.25*VMAX
20 FORI=1TON

i
y=x
"I _________ P
{
1
Inbe z
4 = i
[
' l
! |[y=7\x(1 - x)
| :
I !
| |
| -
0 1 i X
2




|t

Fig. 24

—_—, ——— -

44 LETX=ﬂ.5'
53 FOR T =1TO 148
60 LET X = L#Xx(l —X)

7% 1FJ > 49 THEN put a dot at screen point (4*I, VMAX #X)

88 NEXTJ
9% NEXT 1

Here VMAX denotes the maximum vertical screen coordinate and -

we have taken only 11 = 4., values of A (denoted by the variable /)
because the program is quite slow. After trying the program out, you
may like to increase . .
Note: If your micro has the graphics origin at the top left of the
screen, then, to get the picture the usual way up, you will need to use

(4=I, VMAX+(1 — X)) in line 7@. Similar remarks hold for Programs °

9.21 and 10.1.

The remarkable picture which emerges is shown in Fig. 24. We
have added axes in order to measure where the different types of
behaviour occur. The picture reveals the following:

for 0 < A< 1, the sequence x,, is convergent with limit 0;
[or 1 < A £ 3, the sequence x, is convergent with non-zero
limit;

for 3 < A = 3.45 (approximately) the sequence converges to
a 2-cycle; )

as A increases beyond 3.45, the sequence x,, appears first to
converge to 4 4-cycle and then to behave in a rather chaotic
manner.

355

[

range 3 S A <4

9.4 Exercise
(@) Modify Program 9.3 so that A varies from 3 lo 4, by altering
line 34:

3% L=3+1/N.

(b) Make a similar modification to look in detail at 3.5 A =4,

Fig. 25 is event more remarkable:
for 3.45 < A < 3.55 (approximately) the sequence x, conver:
ges 1o a d-cycle;

Fig. 25

{b)
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ges loan 8-cycle, and therealter thereappearsto bea 16-cycle;
for A close to 3.63 (approximately) the sequence x, conver-
ges to a 6-cycle;

for A close to 3.74 (approximalely) the sequence x, conver-
ges to a 5-cycle;

[or A close to 3.83 {approximately) the sequence x, conver-
ges to a 3-cycle;

for other values of A it appears that x, is chaotic.

9.5 Exercise
Modify Program 9.3 so that A lies in various narrow intervals
between 3.5 and 4. Can you find another interval of values of A in
which x, converges to a 4-cycle?

The aim of this section is to attempt to elucidate some of the
remarkable behaviour contained in the above pictures. We should
warn you, however, that this behaviour is not completely under-
stood and is still the subject of much current research, In case you
are wondering why it is worth devoting great effort to understanding
such a specialised type of sequence we recommend that you try the
next exercise, which deals with the iteration of an enlirely different

family of functions, which have roughly the same shape of graph as .

that of fy(x) over 0 € x-< 1.

9.6 Exercise
Use Program 9.3, with an appropriate modification, Lo investigate
the behaviour of the sequences

Xypy=aAsin(nx,), n=01,2,..,0=A=1,
with xp = 4. (Here x,, is in radians.)
97 Therange 0 s A< 3
In this section we verily the observed behaviour of
X =Ax,{1—x,), #=0,1,2,...,
with xo =%, for A in the range 0 < A < 3; i.e. we shall prove that:

for 0 < A < 1, the sequence x,, converges to 0;
for 1 < A < 3, the sequence x, tends fo a non-zero limit.

First we note that the fixed points of fi(x} = Ax(1 — x) are the
solutions of

Ax(l —x)==x;

[557

Fig. 26

x=0 and x=1-1/A=¢,

say. Thus for 0 < A < 1, the function f; has no fixed points between
and 1. Since fo(0) = f4(1) = 0, we deduce that the graph y = fi(x) lic
below y=x, for0 <x <1, Le.

O0<fix)<x, forO<x<1,0<Asgl

It follows by graphical iteration that il we take any initial term >
with 0 < xo < 1, then the sequence x, converges to 0. See Fig. 26.

Next we consider the case 1 < A < 2. For this range, the fixed poir
ca=1~—1/X of f satisfies 0 < ¢, <3 and the graph of f, looks as i

A 4

Fig. 27

0 Xq N, 0 %o N

(a) 0<A=<1 {b} <A<

yh

1

y=Fix

=Y

o
Lzl
-
[STERY

N

1<As2
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tends to ¢, =1 — 1/A. See Fig. ’?8

Incidentally, this convergence shows that in Fig. 24 the part of the
plot above the A-interval [ 1, 2] has the equation x = 1 — 1/A. Since
the part of the plot above the A-interval [2, 3] seems also to lie on the
same curve, we expect that the sequence x, (with xp, = 1) converges to
¢, for 2 < A< 3also.

In the range 2< A <3 the fixed point ¢, =1~ 1/A satisfies
1<ec,=3 and so the graph y=fi(x) is decreasing as it passes
throngh ¢, See Fig. 29. This suggests that the sequence
X =falx), n=0,1,2, ... xp=1 will yield a cobweb around ¢,,
in other words

ot 4

0 o, xp N
{a) 1<A<2 {b) 1<h <2
74\
y=x
1L
y—fﬂx)
|
] -
I <
I A N
0 cy '%1\ X

fc} TCA<2

[59

rig. 2y

Fig. 30

Y A
y=x
1_.
:
| y=flx
l
t
|
1
|
| ,
1 1 X
0 1 o \
2CAS3

Xp <X <X <...<O<.. . <x5<x<X.

See Fig. 30. Although the sequence x, does appear Lo converge to c,
it is not clear how to prove this. The next few sections (up t
Exercise 9.10) are devoted to the proof.

First note that

Sa@®)e, = AL - 22,
= A1 —-2(1 - 1/A)

=32 -4,
¥ A
y=x
1
r
|
| I |
1 l
E | y=f)\(X)
L
LBy
t { |
.
Ll
[ .
0 Xg Xg Gy X 1\ X
2CAL3



- Fig, 31

so that

[fied| =12 = Al.

Hence ¢, is not a repelling fixed point for 2 < A < 3. It is attracting if

2 < A <3 and indifferent if A =3, We know from §4 that if ¢, is
attracting then x, will converge to ¢, if it lands close enough to c,. But
it is not immediately clear that this will happen if x, = 3. Thus, some
extra argument is required here.

The key idea is to look at the function f3(x) = fi(fA(x)). The gﬁlph :

of this function can be plotied using Program 5.1, with p = 2, and for
2< A=3 it looks as in Fig. 31. Both y=f,(x) and y =f3(x) are

y\
1} y=x
15 |-
-‘;?\
1L
P ‘*‘E
A 1
K y=Ffix)
|
|
|
I
! I N
- I
0 : N 1 }cl A 1\ x
I Lo
i o
i b
¥i Lo
l I y=x
[
1 = [
[
! [
| i
|
|
y = F2(x)
1 x

%/

plotted in order to make comparisons. There are several key teatures
of y = f3(x), which we now ask you to verify.

9.8 Exercises
Let /(x) = Ax(1 — x) with 2 < A < 3.

(a) Prove that f3 is symmetric about the line x = iie.
136 — %) = /3@ + ).

(b) Prove that f% has a fixed point at ¢,, and that
U3 (e = (il

{Hint: Use the chain rule.)
(¢) Prove that f3 takes its maximum value A/4 at d; and 1 - d,
where d, = £ 4+ 3V/(1 — 2/A), so that £,(d;) = 3.
(&) Prove that ¢, < /(%) < d, and deduce that
i@ >3

(¢) Prove that /3 is increasing for 3 < x < d,.

The final feature of y = f3(x) which we require is that 3 has no
fixed points in (0, 1} other than c¢,. Put another way, the graph
y = f3(x) crosses y = x only once for 0 < x < 1. There are various
ways to prove this fact, which seems so obvious from Fig. 31. The
direct method is to write down the fixed point equation

filxy=x &)

and show that the only solutions are 0 and ¢, if 2 < A < 3. Although
this is a quartic equation in x, all four roots can be found easily
because we know that 0 and ¢, are solutions. We ask you to carry out
this manipulation in the following exercise.

9.9 Exercises
{(a} Prove that

Fix) — x = (filx) — x) ga(x),
where

H) = 2= (B4 Dx+(A+ 1),
(Hint: Begin by writing

S0 = 5= 309 = 500 + f309) — x)

(&) Show that the solutions of g,(x) = 0 are
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and deduce that /3 has no fixed points in (0, 1), other than ¢,, il
2<A=s3.

Having established that /3 has no fixed points in (0, 1), apart from
¢a, 1t is now clear that

x<fi(x)<e, forisx<e,,
x>fHx)> e, forc,<x=d,.
See Fig. 32.
It follows that, for 3 < x < d,,

SFx)—cy asn— o,

In particular the sequence f3"(xy), i.e. xo, X3, X4, . . ., CONVErges to ¢,
as does f3"(xy), i.e. x|, x3, X, . . ., (since x; = f,(3) lies in (c,, d4) by
Exercise 9.8(d)). Thus we have shown that

Xp=fixe), n=0,1,2,...,

with x; = 3, does indeed converge to ¢, = 1 — 1/Afor2 <A=3,

It is natural to ask now whether /%(x) — ¢, for all initial terms x in
(0, D(ifx=0or 1 then, of course, f3(x) =0, forn=1,2,...). We
ask you to answer this question in the following exercise.

9.10 Exercise
Show thatif2< A< 3 and 0 <x < I, then

Fix)—~cy asn— o,

y =fZ{x}

Y e i ——— ——— — —

] g e —

Fig. 33

(Int: Show thal J;3(x) 1es In |3, dy] 10T 50ME N UEPENAINgE OL X,)

9.11 What happens if A > 37
Next we look in detail at what happens to the sequence x, = f3(3) a
A increases beyond 3. In our earlier experiments we saw that fo
3 < A =345 (approx.) x, converges to a 2-cycle. Why does thi
happen, and what is the significance of the number 3.457

First let us see what the sequence x,, looks like (using Program 3.1
for a value of A slightly greater than 3. See Fig. 33.

Once again we seem to have

Xp < XS Xy <. .. <<, L, X< Xy <X,

but this time the cobweb does not seem to close in on the fixed poin
ca Let us see if the graph y = f3(x) is any help (Program 5.1, wit]
p =2} Fig. 34 makes it much clearer what is happening. Th
function /3(x) has acquired a new pair of fixed points, here [abelle:
a, and b,. Indeed you have already found these two fixed points i1
Exercise 9.9(b), where you solved

fil)=x

to find the solutions 0, ¢, and (1/24) (A -+ 1 £ V(A + 1)(A = 3)))
The last two fixed points are real if A > 3 and so we must have

i
=+ 1~ VI A+ 1A = 3]

LT



