
Chapter 6

Series

Adding up (infinitely many) different things: e.g. Maclaurin series

ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·

Sometimes this makes sense (the series converges): sometimes it doesn’t (the
series diverges).

6.1 Convergence and Divergence (7.6.1)

Recall the notation

n∑
r=0

ar = a0 + a1 + a2 + · · ·+ an,

∞∑
r=0

ar = a0 + a1 + a2 + · · ·

Examples
3∑
r=0

r2 = 02 + 12 + 22 + 32 = 14.

5∑
r=1

1
r

=
1
1

+
1
2

+
1
3

+
1
4

+
1
5

(=
137
60

).

∞∑
r=0

xr

r!
= ex.
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∞∑
r=1

(−1)r+1x
r

r
= x− x2

2
+
x3

3
− · · · = ln(1 + x).

(Note often see (−1)r or (−1)r+1 in series. (−1)r is +1 when r is even,
−1 when r is odd. (−1)r+1 is the other way round. These give us alternating
series.)

Finite series always make sense, but infinite ones may or may not.
Given an infinite series

∑∞
r=0 ar, define its partial sums Sn by cutting it off

after an

Sn =
n∑
r=0

ar

(these all make sense).
Say that the series converges if the partial sums get closer and closer to some

finite value L, i.e. if Sn → L as n→∞. We write

∞∑
r=0

an = L.

We say that the series diverges otherwise.

Examples

a) Consider
∞∑
r=0

1
2r

= 1 +
1
2

+
1
4

+
1
8

+ · · ·

The partial sums are 1, 3/2, 7/4, 15/8, etc., which clearly get closer and
closer to 2. Thus the series is convergent, and

∞∑
r=0

1
2r

= 2.

b) Consider
∞∑
r=0

(−1)r = 1− 1 + 1− 1 + 1− 1 + 1− 1 + · · ·

The partial sums are 1, 0, 1, 0, 1, 0, etc., which clearly don’t approach any
particular value. Thus the series is divergent.
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These examples illustrate an important fact: if the terms ar don’t get closer
and closer to zero, then

∑∞
r=0 ar must diverge.

However (equally important), the opposite is not true. Just because the
terms get closer and closer to zero, it doesn’t mean the series must converge.
For example

∞∑
r=1

1
r

= 1 +
1
2

+
1
3

+ · · ·

diverges.

6.2 Geometric series (7.3.2, 7.6.1)

One of the few examples when we can actually calculate the value of an infinite
series.

A geometric series is one in which each term is a multiple of the previous
one, i.e.

∞∑
n=0

arn = a+ ar + ar2 + ar3 + · · ·

a is called the first term and r is the common ratio.
The partial sums are given by

Sn = a+ ar + ar2 + · · ·+ arn.

We can work these out with a trick:

rSn = ar + ar2 + · · ·+ arn + arn+1,

so
Sn − rSn = a− arn+1,

or
Sn(1− r) = a(1− rn+1),

or

Sn = a

(
1− rn+1

1− r

)
.

What happens as n→∞. If −1 < r < 1 then rn+1 → 0, and Sn → a
1−r . If

r ≤ −1 or r ≥ 1, then the terms aren’t getting smaller, and the series diverges.
A geometric series

∑
r=0 ar

n converges to a
1−r if −1 < r < 1, and diverges

otherwise.
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6.3 Convergence tests (7.6.2, 7.6.3)

In most examples, it is impossible to work out the partial sums Sn, and we have
to make do with deciding whether the series converges or diverges. There are a
number of tests which help to do this.

The comparison test

If
∑∞
r=0 ar converges, and 0 ≤ |br| ≤ ar for all r, then

∑∞
r=0 br also converges.

If
∑∞
r=0 ar diverges, and 0 ≤ ar ≤ br for all r, then

∑∞
r=0 br also diverges.

Intuitively obvious.

Examples

a) Consider the factorial series

∞∑
r=0

1
r!

= 1 + 1 +
1
2!

+
1
3!

+ · · ·

Each term is less than or equal to the corresponding term in

1 +
∞∑
r=0

1
2r

= 1 + 1 +
1
2

+
1
4

+
1
8
,

which is 1 plus a convergent geometric series. Hence the factorial series
converges (in fact, to e).

b) Consider the harmonic series

∞∑
r=1

1
r

= 1 +
1
2

+
1
3

+ · · ·

We group together the terms as follows:

1 +
1
2

+
(

1
3

+
1
4

)
+
(

1
5

+
1
6

+
1
7

+
1
8

)
+
(

1
9

+ · · ·+ 1
16

)
+ · · ·

We can then see that each bracket is ≥ 1/2, so the series is bigger than

1 +
1
2

+
1
2

+
1
2

+ · · ·

which is divergent. Hence the harmonic series diverges.
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c) Consider the series

∞∑
r=1

1
r2

= 1 +
1
4

+
1
9

+
1
16

+ · · ·

We compare this with the series
∑∞
r=1 ar, where a1 = 1 and

ar =
∫ r

r−1

1
x2

dx

for r ≥ 2. This is a convergent series, since the partial sums are given by

Sn = 1 +
∫ 2

1

1
x2

dx+
∫ 3

2

1
x2

dx+ · · ·+
∫ n

n−1

1
x2

dx

= 1 +
∫ n

1

1
x2

dx

= 1 +
[
−1
x

]n
1

= 1 + (− 1
n

+ 1)

= 2− 1
n
→ 2 as n→∞.

Now ar ≥ 1
r2 for all r, so

∑∞
r=1

1
r2 converges by the comparison test.

The ratio test

Let

l = lim
r→∞

∣∣∣∣ar+1

ar

∣∣∣∣ .
If l < 1 then

∑∞
r=0 ar converges.

If l > 1 then
∑∞
r=0 ar diverges.

If l = 1 then the ratio test tells you nothing.

Idea: if l < 1, choose r with l < r < 1: then the series is smaller than a
geometric series with common ratio r, so must converge.

Examples
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a)

∞∑
r=0

r2

3r
.

We have ar = r2

3r , so

ar+1

ar
=

(r + 1)23r

r23r+1
=

1
3

(r + 1)2

r2
→ 1

3

as r →∞. Hence the series converges.

b)

∞∑
n=1

1
n2
.

We have an = 1
n2 , so

an+1

an
=

n2

(n+ 1)2
→ 1

as n→∞. Hence the ratio test does not tell us whether this series converges
or diverges.

The alternating series test

Suppose each ar ≥ 0, ar+1 ≤ ar for all r, and ar → 0 as r →∞. Then

∞∑
r=0

(−1)rar

converges.

Examples The series

∞∑
r=1

(−1)r+1

r
= 1− 1

2
+

1
3
− 1

4
+ · · ·

converges. The series

∞∑
r=0

(−1)re−r = 1− e−1 + e−2 − e−3 + · · ·

converges.
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6.4 Power series (7.7)

Power series involve a variable x:

∞∑
r=0

arx
r.

Whether they converge or diverge can depend on the value of x.
Maclaurin series are examples of power series.
Let

l = lim
r→∞

∣∣∣∣ar+1x
r+1

arxr

∣∣∣∣ = lim
r→∞

|x|
∣∣∣∣ar+1

ar

∣∣∣∣ .
By the ratio test, the power series converges if l < 1 and diverges if l > 1.

That is, it converges if

|x| < lim
r→∞

∣∣∣∣ arar+1

∣∣∣∣ ,
and diverges if

|x| > lim
r→∞

∣∣∣∣ arar+1

∣∣∣∣ .
Let

R = lim
r→∞

∣∣∣∣ arar+1

∣∣∣∣ ,
the radius of convergence of the power series.

The power series converges if −R < x < R, and diverges if x > R or x < −R.
If x = R or x = −R the series may converge or diverge: we have to consider
these cases separately.

Examples

a) Consider the power series
∞∑
r=0

xr

r!
.

We have ar = 1
r! , so ar

ar+1
= (r+1)!

r! = (r + 1), so R = ∞. Hence the power

series converges for all values of x.

b) Consider the power series
∞∑
r=1

xr

r
.
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We have ar = 1
r , so ar

ar+1
= r+1

r → 1 as r → ∞. Hence R = 1. The power

series converges for −1 < x < 1, and diverges for x > 1 or x < −1. We have
to check the cases x = 1, x = −1 separately.

If x = 1, the power series is
∞∑
r=1

1
r
,

which diverges. If x = −1, the power series is

∞∑
r=1

(−1)r

r
,

which converges by the alternating series test.

Hence the power series converges if −1 ≤ x < 1, and diverges otherwise.

c) Consider the power series
∞∑
n=1

(−1)nxn

n2n
.

We have an = (−1)n

n2n , so∣∣∣∣ anan+1

∣∣∣∣ =
(n+ 1)2n+1

n2n
= 2

n+ 1
n
→ 2

as n → ∞. Hence R = 2, so the power series converges if −2 < x < 2, and
diverges if x < −2 or x > 2.

When x = 2 we have
∞∑
n=1

(−1)n

n
,

which converges by the alternating series test. When x = −2, we have

∞∑
n=1

1
n

which diverges.

Hence the power series converges if −2 < x ≤ 2, and diverges otherwise.
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