All questions are similar to homework problems.

$\begin{array}{c} {\rm MATH191~Solutions~September~2007} \\ {\rm Section~A} \end{array}$

1. The maximal domain is $(2, \infty)$ and the range is \mathbb{R} (1 mark each). The graph is shown below (1 mark). It crosses the x-axis at x = 3 (1 mark).

[1+1+1+1=4 marks]

2. We have $f(0) = \frac{1}{2}$, $f'(x) = -\frac{1}{2}(4+x)^{-3/2}$, so f'(0) = -1/16, and $f''(x) = \frac{3}{4}(4+x)^{-5/2}$, so f''(0) = 3/128. (1 mark each for f(0), f'(0), and f''(0)). Hence the first three terms in the Maclaurin series expansion of f(x) are

$$f(x) = \frac{1}{2} - x/16 + 3x^2/256 + \cdots$$

(1 mark for correct coefficients carried forward from f(0), f'(0), and f''(0). 1 mark for not saying $f(x) = 2 + x/4 - x^2/64$). [3 + 1 + 1 = 5 marks]

3.

- a) $r = \sqrt{2}$ (1 mark). $\theta = 3\pi/4$ (2 marks).
- b) $x = 2\cos(\pi) = -2$. $y = 2\sin(\pi) = 0$. (1 mark each)

Subtract one mark for each answer not given exactly. [3+2=5 marks]

4.

$$\int_{1}^{2} e^{2x} + x^{-1/2} dx = \left[\frac{e^{2x}}{2} + 2x^{1/2} \right]_{1}^{2}$$
 (3 marks)
$$= \frac{e^{4}}{2} - \frac{e^{2}}{2} + 2(\sqrt{2} - 1).$$
 (2 marks)

3+2=5 marks]

5. Differentiating the equation with respect to x gives

$$3x^2 + 2xy + x^2 \frac{dy}{dx} + y^2 + 2xy \frac{dy}{dx} = 0$$
 (2 marks).

Hence

$$\frac{dy}{dx} = \frac{-3x^2 - 2xy - y^2}{x^2 + 2xy}$$
 (2 marks).

Thus $\frac{dy}{dx}$ is equal to $\frac{-3+2-1}{-1}=2$ when (x,y)=(1,-1). (2 marks) The equation of the tangent at this point is therefore

$$y + 1 = 2x - 2,$$

or

$$y = 2x - 3$$
. (2 marks)

$$[2+2+2+2=8 \text{ marks}]$$

6

a) By the product rule and chain rule,

$$\frac{d}{dx}(x^2\cos 2x) = 2x\cos(2x) - 2x^2\sin(2x).$$
 (2 marks)

b) By the chain rule,

$$\frac{d}{dx}(x^2+x+1)^9 = 9(2x+1)(x^2+x+x1)^8$$
 (3 marks).

c) By the quotient rule,

$$\frac{d}{dx}\left(\frac{e^x}{x^2-1}\right) = \frac{e^x(x^2-1) - 2xe^x}{(x^2-1)^2}.$$
 (2 marks).

$$[2+3+2=7 \text{ marks}]$$

7. $f'(x) = -e^{-x} + 1$. Stationary points are given by solutions of f'(x) = 0. So there is exactly one stationary point, namely x = 0. (3 marks)

To determine its nature, $f''(x) = e^{-x}$: so f''(0) = 1 > 0, and 0 is a local minimum. (2 marks).

$$[3 + 2 = 5 \text{ marks}]$$

8.

$$z_{1} + z_{2} = 5 (1 \text{ mark})$$

$$z_{1} - z_{2} = -1 + 2j (1 \text{ mark})$$

$$z_{1}z_{2} = (2+j)(3-j) = 6+j-j^{2} = 7+j (2 \text{ marks})$$

$$z_{1}/z_{2} = \frac{(2+j)(3+j)}{(3-j)(3+j)} = \frac{5+5j}{10} = \frac{1+j}{2} (2 \text{ marks}).$$

[1+1+2+2=6 marks]

9.
$$\sin^{-1}(\frac{-1}{2}) = -\pi/6$$
 (1 mark)
The general solution of $\sin \theta = \frac{-1}{2}$ is

$$\theta = -\pi/6 + 2n\pi \text{ or } \theta = -5\pi/6 + 2n\pi$$

 $\begin{array}{ll} \text{for any } n \in \mathbb{Z} & (3 \text{ marks}) \\ [1+3=4 \text{ marks}] \end{array}$

10.

$$\begin{array}{lll} {\bf a} + {\bf b} & = & 4{\bf i} - {\bf j} & (1 \ {\rm mark}) \\ {\bf a} - {\bf b} & = & 2{\bf i} + 3{\bf j} - 2{\bf k} & (1 \ {\rm mark}) \\ |{\bf a}| & = & \sqrt{3^2 + 1 + 1} = \sqrt{11} & (1 \ {\rm mark}) \\ |{\bf b}| & = & \sqrt{1^2 + 2^2 + 1^2} = \sqrt{6} & (1 \ {\rm mark}) \\ {\bf a} \cdot {\bf b} & = & 3 - 2 - 1 = 0 & (1 \ {\rm mark}). \end{array}$$

Hence the angle between **a** and **b** is $\pi/2$ (1 mark). [1+1+1+1+1+1+1=6 marks]

11. The Maclaurin series expansion of e^x is

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$
 (2 marks)

Hence

a)

$$e^{2x} = 1 + 2x + 2x^2 + \frac{4x^3}{3} + \frac{2x^4}{3} + \dots$$
 (1 mark)

b)

$$e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$
 (1 mark)

c)

$$e^x + e^{-x} = 2 + x^2 + 2\frac{x^4}{4!} + \cdots$$
 (2 marks)

d)

$$e^x - e^{-x} = 2x + 2\frac{x^3}{3!} + \cdots$$
 (2 marks)

e)

$$\frac{e^{2x} + 1 - 2e^x}{x^2} = \frac{2 + 2x + 2x^2 + \frac{4x^3}{3} + \frac{2x^4}{3} + \dots - 2 - 2x - x^2 - \frac{x^3}{3} - \frac{x^4}{12} + \dots}{x^2}$$
$$= 1 + x + \frac{7x^2}{12} + \dots$$
 (4 marks)

So f(0.1) = 1.1 + 0.00583333... = 1.106 to 3 decimal places. (3 marks) [2+1+1+2+2+4+3=15 marks]

12.

a) The radius of the convergence R of the power series

$$\sum_{n=0}^{\infty} a_n x^n$$

is given by

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|,$$

provided this limit exists. In this case $|a_n/a_{n+1}|=2(n+1)^2/n^2$, which converges to 2. So the radius of convergence is 2. (4 marks)

At R=2 the series becomes

$$\sum_{n=1}^{\infty} \frac{1}{n^2},$$

which is a standard convergent series. At R=-2 the series becomes

$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2}.$$

Since the terms of the series are in modulus the same as for R=2, this series is also convergent. (5 marks)

b) In this case $a_n = 1./2^n \sqrt{n}$, so $|a_n/a_{n+1}| = 2\sqrt{(n+1)/n}$, which tends to 2 as $n \to \infty$. Hence R = 2. (4 marks)

At R=2 the series becomes

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}},$$

which diverges. (2 marks)

[4+5+4+2=15 marks]

13. $f'(x) = 3x^2 + 6x = 0 \Leftrightarrow x = 0 \text{ or } x = -2$. Since f'(x) = 3x(x+2), f'(x) > 0 if x < -2 or x > 0, and f'(x) < 0 if $x \in (0,2)$. So f is increasing on each of the intervals $(-\infty, -2)$ and $(0, \infty)$, and decreasing on (-2, 0). So the graph of f can cross the x-axis at most 3 times, and can have at most 3 zeros. We have

$$f(-3) = -1$$
, $f(-2) = -8 + 12 - 1 = 3$, $f(-1) = 1$,
$$f(-\frac{1}{2} = -\frac{3}{8}, f(0) = -1, f(1) = 3.$$

So f must change sign on each of the intervals (-3, -2), $(-1, -\frac{1}{2})$, (0, 1), that is, have zeros in each of these intervals. (6 marks)

The Newton-Raphson formula becomes

$$x_{n+1} = x_n - \frac{x_n^3 + 3x_n - 1}{3x_n^2 + 6x_n} = \frac{2x_n^3 + 3x_n^2 + 1}{3x_n^2 + 6x_n}$$
 (3 marks)

Hence

$$x_1 = \frac{2x_0^3 + 3x_0^2 + 1}{3x_0^2 + 6x_0} = \frac{2}{15/4} = \frac{8}{15} = 0.5333333...$$

So $x_1 = 0.533333$ to 6 decimal places. (1 mark)

$$x_2 = \frac{2x_1^3 + 3x_1^2 + 1}{3x_1^2 + 6x_1} = \frac{1024 + 45 \times 64 + 15 \times 225}{15 \times (192 + 48 \times 15)} = \frac{7279}{13680} = 0.5320906..$$

So $x_2 = 0.532091$ to 6 decimal places. (2 marks)

$$f(x_2) = 0.000007102...$$

So
$$f(x_2) = 0.000007$$
 to 6 decimal places. (3 marks) $[6+3+1+2+3=15 \text{ marks}]$

14. For horizontal asymptotes:

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{1}{1+x} = 0,$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{3}{1+x} + 1 - x \right) = 1 - \infty = -\infty.$$

So y = 0 is a horizontal asymptote (although only at $-\infty$). (2 marks)

For vertical asymptotes: the only possible asymptote is where x + 1 = 0, that is, where x = -1. We have

$$\lim_{x \to (-1)^{-}} f(x) = \lim_{x \to (-1)^{-}} \frac{1}{1+x} = -\infty$$

So x = -1 is a vertical asymptote, although

$$\lim_{x \to (-1)+} f(x) = \lim_{x \to (-1)+} (1 + x/2) = \frac{1}{2}.$$
 (2 marks)

For points of continuity: the only possible discontinuities are at -1 and 0. -1 is certainly a discontinuity, because it is a vertical asymptote. 0 is a point of continuity, because

$$\lim_{x \to 1-} f(x) = \lim_{x \to 1+} f(x) = \frac{3}{2}.$$
 (2 marks)

For $x \in (1, \infty)$ we can write

$$f(x) = \frac{4 - x^2}{1 + x} = \frac{3}{1 + x} + 1 - x.$$

So we have

$$f'(x) = \begin{cases} -\frac{1}{(1+x)^2} & \text{if } x \in (-\infty, -1) \\ \frac{1}{2} & \text{if } x \in (-1, 1) \\ -1 - \frac{3}{(1+x)^2} & \text{if } x \in (1, \infty) \end{cases}$$
 (2 marks)

The function is not differentiable at -1 because it is not continuous there. The only other point that needs checking is 1. There the function is not differentiable because the left derivative is $\frac{1}{2}$ and from the formula for f'(x) above, the right derivative is $-\frac{7}{4}$. (2 marks)

Sc

$$f'(x) \begin{cases} < 0 & \text{if } x \in (-\infty, -1) \\ > 0 & \text{if } x \in (-1, 1) \\ < 0 & \text{if } x \in (1, \infty) \end{cases}$$

So there are no stationary points. The function f is decreasing on each of the intervals $(-\infty, -1)$ and $[1, \infty)$ and increasing on [-1, 1]. (2 marks)

For zeros: since $\frac{1}{1+x} \neq 0$ for any x, and $1 + \frac{1}{2}x > 0$ for $x \in [-1,1]$, the only possible zero is on $(1,\infty)$, when $4-x^2=0$, that is, when x=2. (1 mark) The graph of f is as shown.

$${[2 \text{ marks}]} \\ {[2+2+2+2+2+2+1+2=15 \text{ marks}]}$$

15 Write $z = r(\cos \theta + j \sin \theta)$.

a) The polar form of -4j is $4(\cos(-\pi/2) + j\sin(-\pi/2))$. De Moivre's Theorem gives

$$r^2(\cos 2\theta + j\sin 2\theta) = 4(\cos(-\pi/2) + j\sin(-\pi/2)).$$

So $r^2=4$, $\cos 2\theta=\cos(-\pi/2)$, $\sin 2\theta=\sin(-\pi/2)$. So r=2 and $2\theta=-\pi/2+2n\pi$, any integer n. So $\theta=-\pi/4+n\pi$, any integer n. So the possible values for z are

$$z = 2(\cos(-\pi/4) + j\sin(-\pi/4)) = \sqrt{2} - \sqrt{2}j$$

and

$$z = 2(\cos(3\pi/4) + j\sin(3\pi/4)) = -\sqrt{2} + \sqrt{2}j.$$

[6 marks]

b) The polar form of j is $\cos(\pi/2) + j\sin(\pi/2)$. De Moivre's Theorem gives

$$r^{3}(\cos 3\theta + j\sin 3\theta) = \cos(\pi/2) + j\sin(\pi/2).$$

So $r^3=1$, $\cos 3\theta=\cos(\pi/2)$, $\sin 3\theta=\sin(\pi/2)$. So r=1 and $3\theta=\pi/2+2n\pi$, any integer n. Distinct values of z are given by taking n=0,1,2, that is, $\theta=\pi/6, 5\pi/6, 3\pi/2$. So the solutions to $z^3=j$ are

$$z = \cos(\pi/6) + j\sin(\pi/6) = \frac{1}{2}(\sqrt{3} + j),$$

$$z = \cos(5\pi/6) + j\sin(5\pi/6) = \frac{1}{2}(-\sqrt{3} + j)$$

$$z = \cos(3\pi/2) + j\sin(3\pi/2) = -j.$$

[9 marks]

[6+9=15 marks]