
MATH191: Practice Sheet 8

$$f(x) = \begin{cases} x^2 - 4x & \text{if } x \ge 0\\ \frac{x}{x+1} & \text{if } x < 0, \ x \ne -1. \end{cases}$$

Differentiate f(x) for $x \neq 0$, -1. Find and classify any stationary points, determine any zeros of f(x), and any horizontal and vertical asymptotes. Is f(x) continuous at x = 0? Is it differentiable at x = 0? Sketch the graph of f(x).

2. Differentiate the following functions:

a)
$$x^2 e^x$$
; b) $\frac{x^2}{e^x}$; c) e^{x^2+1} ; d) $\cos(x^2+1)$; e) $(3x+2)^{-1/2}$.

3. Evaluate the following integrals, giving your answers exactly if possible, otherwise to 3 decimal places:

a)
$$\int_0^1 (2x^2 - 4x + 2) dx$$
; b) $\int_{-2}^{-1} \left(e^{-x} - \frac{1}{x} \right) dx$; c) $\int_{-\pi/2}^{\pi/2} (\cos(2x) + \sin(x)) dx$.

4. Find the indefinite integral $\int f(x) dx$ of each of the following functions f(x).

a)
$$x^3 + 1$$
; b) $e^{2x+1} + \cosh(3x - 2)$; c) $\frac{1}{\sqrt{x}} + \frac{1}{x}$; d) $\sin^2 x$.

(*Hint: For part d*), try using the trigonometric identity $\cos 2x = 1 - 2\sin^2 x$.)