
Chapter 2

Differentiation (8.1–8.3,
9.5)

2.1 Rate of Change (8.2.1–5)

Recall that the equation of a straight line can be written as y = mx+ c, where
m is the slope or gradient of the line, and c is the y-intercept (i.e. the value of
y when x = 0).

Example y = 2x+ 1. Draw it. The slope 2 can also be looked on as the rate
of change of y with respect to x: when x increases by 1, y increases by 2. For
example, if x represents time in seconds, and y represents distance travelled in
meters, then the rate of change of y with respect to x is the speed of travel.

If the relationship between y and x is more complicated, for example y = x2,
then the rate of change of y wrt x is different for different values of x.

Example What is the rate of change of y wrt x when x = 1? When x = 1,
y = 1. If x increases by a small amount δ, then y increases to (1+δ)2 = 1+2δ+δ2,
in other words y increases by 2δ + δ2. Thus

Rate of change =
Change in y

Change in x
=

2δ + δ2

δ
= 2 + δ.

To find the instantaneous rate of change at x = 1, we let δ → 0, to obtain
2. Thus the car is travelling at 2 m/s at time 1.

In general, let y = f(x). The rate of change of y with respect to x at x = x0

is given by
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dy

dx

∣∣∣∣
x0

= lim
δ→0

f(x0 + δ)− f(x0)
δ

.

Example Return to the example y = f(x) = x2, and let x0 be any value of
x. Then

dy

dx

∣∣∣∣
x0

= lim
δ→0

f(x0 + δ)− f(x0)
δ

= lim
δ→0

(x0 + δ)2 − x2
0

δ

= lim
δ→0

x2
0 + 2x0δ + δ2 − x2

0

δ

= lim
δ→0

(2x0 + δ)

= 2x0.

Thus at time x0, the speed of the car is 2x0. Equivalently, at time x the
speed of the car is 2x. We also write

dy

dx
= 2x, y′ = 2x,

df

dx
= 2x, or f ′(x) = 2x.

The rate of change is called the derivative of y wrt x, or the derivative of f(x)
wrt x, or just the derivative of f(x).

Geometrically f ′(x0) is the slope of the tangent to y = f(x) at x = x0

(picture). Thus the equation of this tangent is y = f ′(x0)x + c, where c is the
y-intercept. In order to work out c, we use the fact that the tangent passes
through the point (x0, f(x0)). Putting x = x0 and y = f(x0) in the equation
we get f(x0) = f ′(x0)x0 + c, so c = f(x0) − f ′(x0)x0, and hence the equation
of the tangent is

y = f ′(x0)x+ f(x0)− f ′(x0)x0,

or
y = f(x0) + f ′(x0)(x− x0).

Example Find the equation of the tangent to the curve y = x2 at x0 = 3.
When x0 = 3 we have f(x0) = 9, and f ′(x0) = 2x0 = 6. Hence the equation

of the tangent is
y = 9 + 6(x− 3)
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or
y = 6x− 9.

2.2 Derivatives of common functions: rules of
differentiation (8.3.1–7)

Recall that if f(x) = x2, then f ′(x) = 2x. We found this with our bare hands:

f ′(x) = lim
δ→0

(x+ δ)2 − x2

δ
= lim
δ→0

2x+ δ = 2x.

We can do the same thing for other common functions.

Example Let f(x) = x3. Then

f ′(x) = lim
δ→0

(x+ δ)3 − x3

δ

= lim
δ→0

x3 + 3x2δ + 3xδ2 + δ3 − x3

δ

= lim
δ→0

(3x2 + 3xδ + δ2)

= 3x2.

Thus
d

dx
x3 = 3x2.

To find the derivative of xn for other values of n, we need to be able to work
out (x + δ)n. To do this, we have the binomial theorem: to work out (a + b)n,
we don’t have to work out

(a+ b)(a+ b)(a+ b) . . . (a+ b),

we can use

(a+b)n = an+
(
n
1

)
an−1b+

(
n
2

)
an−2b2+

(
n
3

)
an−3b3+· · ·+

(
n

n− 1

)
abn−1+bn,

where (
n
r

)
=

n!
(n− r)!r!

.
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Rather than work out the coefficients
(
n
r

)
using this formula, we can use

Pascal’s triangle. Draw it. Thus, for example

(a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4.

Example Expand (1 + 2x)5 using the binomial theorem.

(1 + 2x)5 = 15 + 5(1)4(2x) + 10(1)3(2x)2 + 10(1)2(2x)3 + 5(1)(2x)4 + (2x)5

= 1 + 5(2x) + 10(4x2) + 10(8x3) + 5(16x4) + (32x5)

= 1 + 10x+ 40x2 + 80x3 + 80x4 + 32x5.

We can use this to work out the derivative of xn for any n. Let f(x) = xn.
Then

f ′(x) = lim
δ→0

(x+ δ)n − xn

δ

= lim
δ→0

xn + nxn−1δ + terms in δ2, δ3 etc.− xn

δ

= lim
δ→0

(nxn−1 + terms in δ, δ2 etc.)

= nxn−1.

Thus
d

dx
xn = nxn−1.

This gives d
dxx

2 = 2x and d
dxx

3 = 3x2 in agreement with our earlier calcu-
lations. We can also now calculate, for example

d

dx
x57 = 57x56.

Example Calculate the equation of the tangent to the graph y = x28 at
x = 1.

Write y = f(x) = x28. We want to use the formula for the tangent at x = x0:

y = f(x0) + f ′(x0)(x− x0),

so since x0 = 1 the equation is

y = f(1) + f ′(1)(x− 1).
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Now f(1) = 128 = 1, and f ′(x) = 28x27, so f ′(1) = 28. Hence the equation of
the tangent is

y = 1 + 28(x− 1),

or
y = 28x− 27.

Derivative of sin x and cos x

Let f(x) = sinx. We can calculate f ′(x) using what trigonometric identity (16):

f ′(x) = lim
δ→0

sin(x+ δ)− sinx
δ

= lim
δ→0

2
cos
(

2x+δ
2

)
sin
(
δ
2

)
δ

= lim
δ→0

cos(x+
δ

2
)
sin(δ/2)

(δ/2)
= cosx.

Thus d
dx sinx = cosx.

Similarly d
dx cosx = − sinx (exercise).

Example Find the equation of the tangent to the graph y = sinx at x = 0.
Write f(x) = sinx and x0 = 0. We want to use our formula

y = f(x0) + f ′(x0)(x− x0)

for the equation of the tangent. We have f(x0) = sin 0 = 0 and f ′(x0) = cos 0 =
1, so the equation is

y = 0 + 1(x− 0),

or y = x.

To find derivatives of other functions, we need some rules of differentiation

The constant multiplication rule

If k is a constant, then d
dxkf(x) = kf ′(x).

Examples

a) d
dx3x2 = 3(2x) = 6x.
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b) d
dx5x4 = 20x3.

c) d
dx2 sinx = 2 cosx.

The sum rule

If u and v are functions of x, then d
dx (u+v) = du

dx + dv
dx . Alternatively, (u+v)′ =

u′ + v′.

Examples

a) d
dx (x3 + 2x+ 1) = 3x2 + 2. Similarly, we can work out the derivative of any
polynomial.

b) d
dx (x2 + 2 sinx− cosx) = 2x+ 2 cosx+ sinx.

The product rule

If u and v are functions of x, then (uv)′ = uv′ + u′v.

Examples

a) Let f(x) = x2 sinx. We let u = x2 and v = sinx. Thus u′ = 2x and
v′ = cosx. The product rule says that f ′(x) = x2 cosx+ 2x sinx.

b) Let f(x) = cos2 x = cosx cosx. We let u = v = cosx. Then u′ = v′ =
− sinx. The product rule says that f ′(x) = cosx(− sinx) + (− sinx) cosx =
−2 sinx cosx. Note f ′(x) = − sin(2x).

c) Let f(x) = x2 sinx cosx. We let u = x2 sinx and v = cosx. Thus u′ =
x2 cosx+ 2x sinx (part a)), and v′ = − sinx. The product rule says that

f ′(x) = (x2 sinx)(− sinx)+(x2 cosx+2x sinx) cosx = x2(cos2 x−sin2 x)+2x sinx cosx.

(Note f ′(x) = x2 cos 2x+ x sin 2x.)
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The quotient rule

If u and v are functions of x, then

(u
v

)′
=
vu′ − uv′

v2
.

Examples

a) Let f(x) = 1/x. We let u = 1 and v = x, so u′ = 0 and v′ = 1. The quotient
rule says that

f ′(x) =
x(0)− (1)(1)

x2
= −1/x2.

b) Let f(x) = tanx = sin x
cos x . We let u = sinx and v = cosx. Thus u′ = cosx

and v′ = − sinx. Thus

f ′(x) =
cosx cosx− sinx(− sinx)

cos2 x
=

cos2 x+ sin2 x

cos2 x
=

1
cos2 x

= sec2 x.

c) Let f(x) = 1/xn. We let u = 1 and v = xn, so u′ = 0 and v′ = nxn−1. The
quotient rule says that

f ′(x) =
xn(0)− (1)nxn−1

x2n
=
−n
xn+1

.

Written another way,
d

dx
x−n = −nx−n−1,

so we can see that
d

dx
xn = nxn−1

whether n is positive or negative. In fact, we have d
dxx

a = axa−1 for any
number a. Some examples:

d) Let f(x) =
√
x = x1/2. Then f ′(x) = (1/2)x−1/2 = 1

2
√
x

.

e) Let f(x) = 1
3√x = x−1/3. Then f ′(x) = −(1/3)x−4/3 = −1

3x 3√x .
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The chain rule

Let f(x) = g(h(x)). Then f ′(x) = g′(h(x))h′(x).

Examples

a) Let f(x) = (4x− 1)3. Let g(x) = x3 and h(x) = 4x− 1, so f(x) = g(h(x)).
We have g′(x) = 3x2 and h′(x) = 4. Thus

f ′(x) = g′(h(x))h′(x) = 3(4x− 1)2 · 4 = 12(4x− 1)2.

b) Let f(x) = sin(3x+2). Let g(x) = sinx and h(x) = 3x+2, so f(x) = g(h(x)).
We have g′(x) = cosx and h′(x) = 3. Thus

f ′(x) = g′(h(x))h′(x) = cos(3x+ 2) · 3 = 3 cos(3x+ 2).

More generally, d
dx sin(ax+b) = a cos(ax+b) and d

dx cos(ax+b) = −a sin(ax+
b).

c) Let f(x) = (sinx + cos 3x)3. Let g(x) = x3 and h(x) = sinx + cos 3x, so
f(x) = g(h(x)). We have g′(x) = 3x2 and h′(x) = cosx− 3 sin 3x. Thus

f ′(x) = g′(h(x))h′(x) = 3(sinx+ cos 3x)2(cosx− 3 sin 3x).

d) Let f(x) = tan((sinx + cos 3x)3). Let g(x) = tanx and h(x) = (sinx +
cos 3x3), so f(x) = g(h(x)). We have g′(x) = sec2(x) and h′(x) = 3(sinx +
cos 3x)2(cosx− 3 sin 3x), so

f ′(x) = g′(h(x))h′(x) = sec2((sinx+cos 3x)3)·3(sinx+cos 3x)2(cosx−3 sin 3x).

The Inverse Function Rule

Let y = f−1(x) (so x = f(y)). Then

dy

dx
=

1
f ′(y)

.

Examples

a) Let y =
√
x (so x = y2, and we have f(y) = y2. Then

dy

dx
=

1
2y

=
1

2
√
x
.
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Thus
d

dx

√
x =

1
2
√
x
.

This agrees with our earlier way of calculating this: d
dxx

1/2 = frac12x−1/2.

b) Let y = sin−1(x) (so x = sin y, and we have f(y) = sin y. Then

dy

dx
=

1
cos y

=
1√

1− sin2 y
=

1√
1− x2

.

Thus
d

dx
sin−1(x) =

1√
1− x2

.

c) Similarly, it can be shown that

d

dx
cos−1(x) =

−1√
1− x2

.

d) Let y = tan−1(x) (so x = tan y, and we have f(y) = tan y. Then

dy

dx
=

1
sec2 y

=
1

1 + tan2 y
=

1
1 + x2

.

Thus
d

dx
tan−1(x) =

1
1 + x2

.

2.3 An application: the Newton-Raphson method
(9.5.8)

This is a method for getting an approximate solution to the equation f(x) = 0
in cases where we can’t get an exact solution. Suppose that, by drawing a graph
of f(x) we can see that there is a solution α (so f(α) = 0). The aim is to get a
good approximation to α. From the graph we can make an initial guess x0 at
α. The idea (draw picture) is that the place x1 where the tangent to the graph
at x0 hits the x-axis is a better approximation than x0.

The equation of the tangent is

y = f(x0) + f ′(x0)(x− x0),
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which intersects the x-axis when y = 0, so

f(x0) + f ′(x0)(x− x0) = 0,

or

x− x0 =
−f(x0)
f ′(x0)

.

Thus the tangent hits the x-axis when

x = x0 −
f(x0)
f ′(x0)

.

Thus

x1 = x0 −
f(x0)
f ′(x0)

.

Now we can take x1 as our new guess for α, and use the same method to get
a better guess

x2 = x1 −
f(x1)
f ′(x1)

.

We can repeat this as many times as we like to get better and better guesses
x3, x4, and so on. In general

xn+1 = xn −
f(xn)
f ′(xn)

.

Example Consider the equation x = cos x. By drawing the graphs of x and
cos x, we can see that there is a solution somewhere between x = 0 and x = π/2.
Let’s take x0 = 1 as our initial guess at the solution.

We need to write the equation in the form f(x) = 0, which we do by setting
f(x) = x− cosx. Then f ′(x) = 1 + sinx. Thus the formula

xn+1 = xn −
f(xn)
f ′(xn)

becomes

xn+1 = xn −
xn − cosxn
1 + sinxn

.

So

x1 = x0 −
x0 − cosx0

1 + sinx0
= 1− 1− cos(1)

1 + sin(1)
= 0.750364.

This should be a better approximation than x0 to the solution.
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For the next approximation

x2 = x1 −
x1 − cosx1

1 + sinx1
= 0.750364− 0.750364− cos(0.750364)

1 + sin(0.750364)
= 0.739113.

Then

x3 = x2 −
x2 − cosx2

1 + sinx2
= 0.739085,

and

x4 = x3 −
x3 − cosx3

1 + sinx3
= 0.739085.

Thus the solution is x = 0.739085 to six decimal places. Note that we got this
on the third step, but we had to go as far as the fourth step to know that it was
accurate to six decimal places.

Example Show graphically that the equation x3 = tan−1(x) has three so-
lutions, and find an approximation to the positive solution which is correct to
four decimal places.

From the graph, it is clear that there are three solutions x = 0 and x = ±α.
We want to find an approximation to α. In order to be sure that the method
finds α and not 0, we’ll make sure that our initial guess is bigger than α: let’s
take x0 = 2.

Write the equation as f(x) = x3 − tan−1(x) = 0. Then f ′(x) = 3x2 − 1
1+x2 .

So

xn+1 = xn −
f(xn)
f ′(xn)

= xn −
x3
n − tan−1(xn)
3x2

n − 1
1+x2

n

.

Thus

x1 = 2− 23 − tan−1(2)
3 · 22 − 1

1+22

= 2− 8− 1.107149
12− 1

5

= 2− 6.892851
11.8

= 1.415860.

Then

x2 = x1 −
x3

1 − tan−1(x1)
3x2

1 − 1
1+x2

1

= 1.084510.

x3 = x2 −
x3

2 − tan−1(x2)
3x2

2 − 1
1+x2

2

= 0.937997.
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x4 = x3 −
x3

3 − tan−1(x3)
3x2

3 − 1
1+x2

3

= 0.903896.

x5 = x4 −
x3

4 − tan−1(x4)
3x2

4 − 1
1+x2

4

= 0.902031.

x6 = x5 −
x3

5 − tan−1(x5)
3x2

5 − 1
1+x2

5

= 0.902025.

Thus the solution is x = 0.902025, which is correct to at least 4 decimal
places. In fact, (0.902025)3 − tan−1(0.902025) = −0.00000093.

2.4 Differentiability (8.2.4)

The derivative f ′(a) gives the slope of the tangent to the graph y = f(x) at
x = a. If there is no well-defined tangent at x = a, or if f(x) isn’t continuous
at x = a, then we say that f(x) is not differentiable at x = a. Thus f(x) is
differentiable at x = a if

a) f(x) is continuous at x = a, and

b) The graph of y = f(x) has a well-defined (non-vertical) tangent at x = a.

We say that f(x) is differentiable if it is differentiable at x = a for every
value of a.

Examples 1/x, |x|, | sinx|.

2.5 Higher derivatives (8.3.13)

The derivative f ′(x) of a function f(x) is also a function, and may be dif-
ferentiable itself. Differentiating a function y = f(x) twice yields the second

derivative, which is written f ′′(x), f (2)(x), d
2f
dx2 , y′′ or d2y

dx2 . It tells us the rate of
change of f ′(x) wrt x: i.e. how the slope of the tangent to y = f(x) is changing
as x changes.
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Similarly, the second derivative f ′′(x) may be differentiable, yielding the

third derivative f ′′′(x), f (3)(x), or d3f
dx3 . In general, we get the nth derivative

f (n)(x) or dnf
dxn by differentiating f(x) n times in succession.

We say that f(x) is n times differentiable if it is possible to differentiate it
n times in succession, and that it is infinitely differentiable or smooth if there is
no limit to the number of times it can be differentiated.

Examples

a) Let f(x) = x3 + 2x2 + 3x+ 1. Then f ′(x) = 3x2 + 4x+ 3, f ′′(x) = 6x+ 4,
f ′′′(x) = 6, and f (n)(x) = 0 for all n ≥ 4. Thus f(x) is smooth.

b) Let f(x) = sinx. Then f ′(x) = cosx, f ′′(x) = − sinx, f ′′′(x) = − cosx,
f (4)(x) = sinx, and so on for ever. Thus f(x) is smooth.

c) Let f(x) = 1
x = x−1. Then f ′(x) = −x−2, f ′′(x) = 2x−3, f ′′′(x) = −6x−4,

f (4)(x) = 24x−25, and so on. f(x) isn’t differentiable at x = 0 (since 0 isn’t
in its maximal domain), but it is smooth everywhere else.

2.6 Maclaurin Series and Taylor Series (9.5.1–2)

Suppose that f(x) is a smooth function, and suppose that it can be written as

f(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 · · ·

or equivalently as

f(x) =
∞∑
r=0

arx
r.

Then we can work out the coefficients ar by repeatedly differentiating f(x):

f(0) = a0.

f ′(x) = a1 + 2a2x+ 3a3x
2 + 4a4x

3 + · · · , so f ′(0) = a1.

f ′′(x) = 2a2 + 6a3x+ 12a4x
2 + · · · , quad so f ′′(0) = 2a2 or a2 = f ′′(0)/2.

f ′′′(x) = 6a3 + 24a4x+ · · · , so f ′′′(0) = 6a3 or a3 = f ′′′(0)/6.

f (4)(x) = 24a4 + · · · , so f (4)(0) = 24a4 or a4 = f (4)(0)/24.

In general
an = f (n)(0)/n!,
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so

f(x) = f(0) + f (1)(0)x+
f (2)(0)

2!
x2 +

f (3)(0)
3!

x3 +
f (4)(0)

4!
x4 + · · ·

or more concisely

f(x) =
∞∑
r=0

f (r)(x)
r!

xr.

(where we take 0! to be 1).
This is called the Maclaurin Series expansion of f(x). Note that we have

simply made the assumption that it is possible to write f(x) in this way: we’ll
see more later about which functions f(x) this is possible for, and for which
values of x it makes sense.

Examples

a) Let f(x) = x3 + 2x2 + 2x + 1. We have f(0) = 1, f ′(x) = 3x2 + 4x + 2, so
f ′(0) = 2, f ′′(x) = 6x+4, so f ′′(0) = 4, and f ′′′(x) = 6, so f ′′′(0) = 6. Then
f (n)(x) = 0 for all n ≥ 4, so f (n)(0) = 0 for all n ≥ 4. Thus the Maclaurin
series expansion is

1 + 2x+
4
2!
x2 +

6
3!
x3 = x3 + 2x2 + 2x+ 1.

Thus for polynomials, we just recover the original polynomial.

b) Let f(x) = sinx. We have f(0) = 0, f ′(x) = cosx, so f ′(0) = 1, f ′′(x) =
− sinx, so f ′′(0) = 0, f ′′′(x) = − cosx, so f ′′′(0) = −1, f (4)(x) = sinx, so
f (4)(0) = 0, f (5)(x) = cosx, so f (5)(0) = 1, and so on for ever. Thus

sinx =
1
1!
x+
−1
3!
x3 +

1
5!
x5 +

−1
7!
x7 + · · · ,

or

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

c) Similarly, the Maclaurin series expansion of cosx is

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
− · · ·

Working out the factorials in the series for sinx we get

sinx = x− x3

6
+

x5

120
− x7

5040
+ · · · ,
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and the denominators get small very quickly. If x is also small, then the terms
in the Maclaurin series get small very quickly: for example

sin(0.1) = (0.1)− (0.1)3

6
+

(0.1)5

120
− (0.1)7

5040
+ · · ·

= (0.1)− 1
6000

+
1

12000000
− 1

50400000000
+ · · ·

Thus we can get a good approximation to sin(0.1) by just taking the first
few terms.

The first approximation is sin(0.1) = 0.1. The second is sin(0.1) = 0.1 −
1/6000 = 0.09983333 . . .. The third is sin(0.1) = 0.1 − 1/6000 + 1/12000000 =
0.09983341666 . . ., and so on. In fact, sin(0.1) = 0.099833416647 . . ..

Maclaurin’s theorem is very good for getting approximations to f(x) when x
is very small, but what happens if, for example, we want to get an approximation
to sin(10)? The Maclaurin series tells us that

sin(10) = 10− 103

3!
+

105

5!
− 107

7!
+

109

9!
− · · · ,

or

sin(10) = 10− 1000
6

+
100000

120
− 10000000

5040
+

1000000000
362880

− · · ·

The terms do eventually get small (for example 1035

35! = 0.00012 . . .), but it
takes a long time.

One way to deal with this is to change variable, setting y = x− a for some
a, so that when x is close to a, y is close to 0. This change of variable gives the
Taylor series expansion of f(x) about x = a:

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 +

f ′′′(a)
3!

(x− a)3 + · · · ,

or

f(x) =
∞∑
r=0

f (n)(a)
n!

(x− a)n.

This is good for approximating f(x) when x is close to a (so that x − a is
small).

Examples

a) Let f(x) = x3 + x2 + x + 1, and let a = 1. We have f(a) = 4, f ′(x) =
3x2 + 2x + 1, so f ′(a) = 6, f ′′(x) = 6x + 2, so f ′′(a) = 8, and f ′′′(x) = 6,
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so f ′′′(a) = 6. Then f (n)(x) = 0 for all n ≥ 4, so f (n)(a) = 0 for all n ≥ 4.
Thus the Taylor series expansion of f(x) about x = 1 is

f(x) = 4+6(x−1)+
8
2!

(x−1)2+
6
3!

(x−1)3 = 4+6(x−1)+4(x−1)2+(x−1)3.

Thus for a polynomial, we are simply rewriting it as a polynomial in x− a.

b) Find an approximation for f(x) = 1/x near x = 1 by using the first three
terms in the Taylor series expansion.

We have f(1) = 1. f ′(x) = −1/x2, so f ′(1) = −1. f ′′(x) = 2/x3, so
f ′′(x) = 2. Hence

1
x

= 1− (x− 1) +
2
2!

(x− 1)2 = 1− (x− 1) + (x− 1)2 = x2 − 3x+ 3.

Tricks

x sinx, sin2 x, cos2 x.

2.7 L’Hopital’s rule (9.5.3)

What is limx→0
sin x
x ? If we write sinx as its Maclaurin series expansion, then

sinx
x

=
x− x3

3! + x5

5! + · · ·
x

= 1− x2

3!
+
x4

5!
+ · · · ,

and it is obvious that limx→0
sin x
x = 1.

Similarly, consider limx→0
1−cos x

x . We have

1− cosx
x

=
1− (1− x2

2! + x4

4! − · · ·
x

=
x2

2! −
x4

4! + · · ·
x

=
x

2!
− x3

4!
+ · · · ,

and it is obvious that limx→0
1−cos x

x = 0.

We can do the same to work out any limit limx→a
f(x)
g(x) where f(a) = g(a) =

0. Expand f(x) and g(x) as Taylor series about x = a to get

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·

g(x) = g(a) + g′(a)(x− a) +
g′′(a)

2!
(x− a)2 + · · ·
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and so

f(x)
g(x)

=
f ′(a)(x− a) + f ′′(a)

2! (x− a)2 + · · ·
g′(a)(x− a) + g′′(a)

2! (x− a)2 + · · ·
=
f ′(a) + f ′′(a)

2! (x− a) + · · ·
g′(a) + g′′(a)

2! (x− a) + · · ·
,

from which it is clear that

lim
x→a

f(x)
g(x)

=
f ′(a)
g′(a)

.

This is L’Hôpital’s rule. Note it only works when f(a) = g(a) = 0.

If f ′(a) = g′(a) = 0, then we can extend this to show that the limit is f ′′(a)
g′′(a) :

if these are both 0, then it is f ′′′(a)
g′′′(a) , etc.

Examples

a) What is limx→2
x2−x−2
x−2 ? We have f(x) = x2 − x − 2 and g(x) = x − 2, so

f ′(x) = 2x− 1 and g′(x) = 1. Hence f ′(2) = 3 and g′(2) = 1, so the limit is
3.

b)

lim
x→0

sinx− x
x3

= lim
x→0

cosx− 1
3x2

= lim
x→0

− sinx
6x

= lim
x→0

− cosx
6

= −1
6
.

2.8 The exponential function (2.7.1, 8.3.9)

Functions of the form f(x) = ax, where a > 1 is a constant, are called exponen-
tial functions.

Notice that a0 = 1, a1 = a, ax is large when x is large, and a−x = 1
ax is

small, but positive, when x is large. Thus all of the exponential functions are
increasing and have range (0,∞). Draw graphs of 2x, 3x, 4x.

Exponential functions have the following important properties:

ax1ax2 = ax1+x2

ax1

ax2
= ax1−x2

akx = (ak)x = bx where b = ak.
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By the last property, we only need to understand one exponential function
and we understand them all: for example 4x = 22x, 3x = 2kx where k is the
number with 2k = 3.

We choose a preferred value of a in such a way that ax is its own derivative.
Define the exponential function f(x) = exp(x) to be the function with

f ′(x) = f(x) and f(0) = 1.
This is enough to tell us its Maclaurin series expansion: since f (n)(0) = 1

for all n, we have

exp(x) = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ · · · =

∞∑
r=0

xr

r!
.

It can be shown (not hard, but quite a lot of work), that exp(x) = ex, where

e = exp(1) = 1 + 1 +
1
2!

+
1
3!

+
1
4!

+ · · · = 2.7182818 . . .

.
Thus ex and exp(x) are just different ways of writing the same function,

which has the crucial property that

d

dx
ex = ex.

Draw graph. Note maximal domain is R, range is (0,∞), increasing, neither
even nor odd.

2.9 The logarithmic function (2.7.2, 8.3.9)

The inverse function of f(x) = ax is called the logarithm to base a, written loga.
Thus if y = ax then x = loga y.

The inverse of the exponential function y = ex is called the natural logarithm,
written ln (so ln is just another way of saying loge). Thus if y = ex then x = ln y.

We can draw the graph of y = lnx by using the reflection rule. The maximal
domain in (0,∞), the range is R, and lnx is increasing.

To differentiate lnx, we use the inverse function rule: if y = f−1(x) (so
x = f(y)), then dy

dx = 1
f ′(y) . In this case, y = lnx (so x = f(y) = ey), so

dy

dx
=

1
f ′(y)

=
1
ey

=
1
x
.
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Thus
d

dx
(lnx) =

1
x
.

The properties of the exponential function give corresponding properties of
the logarithm:

ex1ex2 = ex1+x2 translates to ln(x1x2) = lnx1 + lnx2.
ex1

ex2 = ex1−x2 translates to ln x1
x2

= lnx1 − lnx2.
enx = (ex)n translates to lnxn = n lnx.
Thus for example

ln

(√
10x
y2

)
= ln(

√
10x)− ln(y2)

=
1
2

ln(10x)− 2 ln y

=
1
2

(ln(10) + lnx)− 2 ln y.

lnx doesn’t have a Maclaurin series expansion, since x = 0 isn’t in the
maximal domain of lnx. However, it is possible to calculate the Maclaurin
series of ln(1 + x) (this comes down to the same thing as finding the Taylor
series of lnx about x = 1).

Have f(x) = ln(1 + x), so f(0) = ln(1) = 0.
f ′(x) = 1

1+x , so f ′(0) = 1
1 = 1.

f ′′(x) = −1
(1+x)2 , so f ′′(0) = −1.

f ′′′(x) = 2
(1+x)3 , so f ′′′(0) = 2.

f ′′′′(x) = −6
(1+x)4 , so f ′′′′(0) = −6.

Thus

ln(1 + x) = x− x2

2
+
x3

3
− x4

4
+
x5

5
− · · ·

This expansion clearly doesn’t make sense if x ≤ −1, since ln is only defined
for x > 0. We shall see later that it also doesn’t make sense if x > 1: in that
case, the numerators of the terms grow faster than the denominators. It does,
however, work for x = 1, when we get

ln 2 = 1− 1
2

+
1
3
− 1

4
+

1
5
− · · ·

Because the terms get small very slowly, we need to take very many terms
to get an accurate approximation to ln 2.
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2.10 Hyperbolic functions (2.7.3, 8.3.9)

The hyperbolic functions sinhx, coshx, and tanhx are defined in terms of ex:
their relationship with the ordinary trig functions will become clear when we do
complex numbers.

We have sinhx = ex−e−x

2 , coshx = ex+e−x

2 , and tanhx = sinh x
cosh x . We can

also define sechx etc. by analogy with the trig functions.

Notice that sinh(−x) = e−x−e−(−x)

2 = − sinhx, so sinhx is an odd function.
Draw graph. Odd, maximal domain and range are R, increasing.

Similarly coshx is even, its maximal domain is R, and its range is [1,∞).
tanhx is odd, its maximal domain is R, and its range is (−1, 1).
Notice that d

dxe
−x = −e−x, so it follows that d

dx sinhx = coshx and d
dx coshx =

sinhx. By the quotient rule, we have

d

dx
tanhx =

d

dx

sinhx
coshx

=
cosh2 x− sinh2 x

cosh2 x
= 1− tanh2 x.

In fact, there’s another way to write cosh2 x− sinh2 x. Notice that cosh2 x−
sinh2 x = (coshx + sinhx)(coshx − sinhx). Now coshx + sinhx = ex and
coshx − sinhx = e−x, so cosh2 x − sinh2 x = exe−x = e0 = 1. Compare this
with the standard trig identity cos2 x+ sin2 x = 1.

In fact, every standard trig identity has a corresponding version for hyper-
bolic trig functions, which can be obtained by Osborn’s rule: change the sign of
term which involves a product (or implied product) of two sines.

For example sin(A+B) = sinA cosB + cosA sinB becomes sinh(A+B) =
sinhA coshB + coshA sinhB. cos(A + B) = cosA cosB − sinA sinB becomes
cosh(A+B) = coshA coshB+sinhA sinhB. To understand what is meant by an
implied product the identity tan(A+B) = tanA+tanB

1−tanA tanB becomes tanh(A+B) =
tanhA+tanhB
1+tanhA tanhB since tanA tanB = sinA sinB

cosA cosB involves an implied product of two
sines.

Finally, let’s work out the Maclaurin series expansions of sinhx and coshx.
We can either do this directly, by differentiating, or we can note that

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ · · · ,

e−x = 1− x+
x2

2!
− x3

3!
+
x4

4!
− x5

5!
+ · · · .
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Thus

coshx =
ex + e−x

2
= 1 +

x2

2!
+
x4

4!
+ · · ·

and

sinhx =
ex − e−x

2
= x+

x3

3!
+
x5

5!
+ · · ·

Thus the series for coshx consists of the even terms of that for ex, and
the series for sinhx consists of the odd terms. Compare this with the series
expansions of sinx and cosx.

2.11 Implicit Differentiation (8.3.11)

Sometimes it is difficult (or impossible) to put the relationship between x and
y in the form y = f(x). In such cases, we have to use implicit differentiation to
find dy

dx .

Examples

a) Consider the circle of radius 1 centred on the origin. The equation of this
circle is x2 + y2 = 1. Find the slopes of the tangents to the circle at the
points (x0, y0) = (1/2,

√
3/2) and (x1, y1) = (1/2,−

√
3/2).

We could write the equation as y =
√

1− x2, but it is easier to leave it
the way it is. We differentiate both sides of the equation wrt x. This gives
2x+ d

dx (y2) = 0. What is d
dx (y2)? We can write y2 as f(y), where f(y) = y2,

and then by the chain rule

d

dx
(f(y)) = f ′(y)y′ = 2y

dy

dx
.

Thus

2x+ 2y
dy

dx
= 0,

or
dy

dx
= −x

y
.

So the slope of the tangent at (x0, y0) = (1/2,
√

3/2) is

−x0

y0
= − 1/2√

3/2
=
−1√

3
.

Similarly, the slope of the tangent at (x1, y1) = (1/2,−
√

3/2) is 1/
√

3.
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The general rule which we use in implicit differentiation, is

d

dx
f(y) = f ′(y)

dy

dx
.

b) Find the equation of the tangent to the curve

x3 − 4x2y + y3 = 1

at the point (x0, y0) = (1, 2).

Differentiating the equation with respect to x we get

3x2 − 4
d

dx
(x2y) + 3y2 dy

dx
= 0.

What is d
dx (x2y). We have to use the product rule:

d

dx
(x2y) = x2 dy

dx
+ y

d

dx
(x2) = x2 dy

dx
+ 2xy.

Thus we have

3x2 − 4x2 dy

dx
− 8xy + 3y2 dy

dx
= 0.

Collecting the terms in dy
dx , we get

(4x2 − 3y2)
dy

dx
= 3x2 − 8xy,

so
dy

dx
=

3x2 − 8xy
4x2 − 3y2

.

Thus when (x, y) = (x0, y0) = (1, 2), we have

dy

dx
=

3− 16
4− 12

=
13
8
.

The equation of the tangent at (x0, y0) is

y = y0 +
dy

dx
(x− x0),

or

y = 2 +
13
8

(x− 1).
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We can simplify this to

8y = 16 + 13(x− 1),

or
8y = 3 + 13x.

2.12 Stationary points (9.2.1)

We know that f ′(a) gives the slope of the tangent to the graph of y = f(x) at
x = a. Thus when f ′(a) > 0, the graph is increasing at a: when f ′(x) < 0 the
graph is decreasing at a. (Pictures). When f ′(a) = 0, the tangent to the graph
at x = a is horizontal: such a point a is called a stationary point.

There are three types of stationary point a: a can be a local maximum, a
local minimum, or a point of inflection (draw pictures).

To decide which of the three types a given stationary point a is, consider
what happens to f ′(x) for x near a. Draw pictures of f(x) and f ′(x).

Thus if f ′(a) = 0 then

a) If f ′′(a) > 0 then a is a local minimum.

b) If f ′′(a) < 0 then a is a local maximum.

c) If f ′′(a) = 0 then a is a point of inflection.

In fact the last of these is a little lie: if f ′′′(a) = 0 also, then we have
to look at f ′′′′(a) to decide which case we’re in: in general, we have to keep
differentiating until we find an f (n)(a) which isn’t 0.

Examples

a) Find and classify the stationary points of f(x) = x3 − 6x2 + 9x− 2.

We have f ′(x) = 3x2 − 12x+ 9 = 3(x2 − 4x+ 3) = 3(x− 1)(x− 3). To find
the stationary points, we have to solve f ′(x) = 0: thus we have stationary
points at x = 1 and at x = 3.

To determine which type they are, we differentiate again: f ′′(x) = 6x− 12.
Thus f ′′(1) = 6 − 12 = −6 < 0, so x = 1 is a local maximum. f ′′(3) =
18− 12 = 6 > 0, so x = 3 is a local minimum.
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b) Find and classify the stationary points of f(x) = x2e−x.

We have f ′(x) = 2xe−x − x2e−x = e−x(2x − x2) = e−xx(2 − x). Thus the
stationary points are at x = 0 and x = 2. (Note e−x is never 0).

To classify them, we calculate f ′′(x) = −e−x(2x−x2)+e−x(2−2x) = e−x(2−
4x+x2). Thus f ′′(0) = 2, so 0 is a local minimum; f ′′(2) = e−2(2−8+4) < 0,
so 2 is a local maximum.

2.13 Graph Sketching

Method:

i) Maximal domain.

ii) Where crosses y axis.

iii) Where crosses x-axis (if possible).

iv) Stationary points.

v) Behaviour as x→ ±∞.

vi) Vertical Asymptotes.

vii) If necessary, see where f ′(x) > 0 and where f ′(x) < 0.

viii) Sketch the graph.

Examples

a) x2 − 3x+ 2.

b) x3 − 12x+ 3.

c) x−3
x−1 .
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