
Solutions to MATH105 Practice Exam

Section A

2 marks 1a) (ii) and (iv) are logically equivalent to (i). (iii) is not, because
∨ means “or”. (v) is not, because x2 ≤ 16⇔ x ∈ [−4, 4].

2 marks b) (iii), (iv) and (v) are logically equivalent to (i). (ii) is not, but
the statement x ∈ A⇒ x ∈ B is logically equivalent to (i).

2 marks c)(iii) and (iv) are logically equivalent to (i). (v) is not, because,
for example, (v) holds when m = 4 and n = 2 but (i) is not true
for this choice of m and n, because 4 does not divide 2.

6 marks in total

3 marks 2a) For a real number x, if x < 5 then x2 < 25.
This is false, because −6 < 5 but (−6)2 = 36 > 25.

3 marks b) For a real number x, if x is greater than 0 or less than −1, then
x is greater than 0.
This is clearly false because if x < −1 then it is true that “x < −1
or x > 0”. But it is not true that x > 0.

6 marks in total

1 mark 3a)x ≤ 1 ∨ x ≥ 2.
3 marks b) ∃x ∈ R, x2 ≤ −2. [Of course, this is false, but that was not

what was asked.]
4 marks in total

1 mark 4a) 2 + 3x < −1 ⇔ 3x < −3 ⇔ x < −1.

2 marks b) If 3− x > 0 then 1 <↔ 2 + x

3− x
< 2 ⇔ 3− x < 2 + x < 6− 2x ⇔

(1 < 2x∧3x < 4⇔ 1

2
< x <

4

3
, which is compatible with 3−x > 0.

2 marks If 3 − x < 0 then 1 <↔ 2 + x

3− x
< 2 ⇔ 3 − x > 2 + x > 6 − 2x ⇔

1 > 2x ∧ 3x > 4 ⇔ 1

2
> x ∧ x >

4

3
. This is never true.

So altogether we have 1 <⇔ 2 + x

3− x
< 2 ⇔ 1

2
< x <

4

3
5 marks in total

1



1 marks 5. To start the induction, 52 + 1 = 26 < 32 = 25. So n2 + 1 < 2n is
true for n = 5.

5 marks

Now suppose inductively that n ≥ 5 and n2 + 1 < 2n. Then

(n + 1)2 + 1 = n2 + 2n + 2 < 2n2 + 2 < 2 · 2n = 2n+1

So true for n implies true for n + 1 and n + 1 < 2n is true for all
n ≥ 5.

6 marks in total

6.

1 0
0 1

∣∣∣330
225

R1 −R2

→ 1 −1
0 1

∣∣∣105
225

→
R2 − 2R1

1 −1
−2 3

∣∣∣105
15

R1 − 7R2

→ 15 −22
−2 3

∣∣∣ 0
15

4 marks

As a result of this:
1 mark (i) the g.c.d. d is 15;
1 mark (ii) from the first row of the last matrix, r = 22 and s = 15;
1 mark (iii) from the second row of either of the last two matrices, m = −2

and n = 3;
2 marks (iv) The lcm is 330× 15 = 4950.

9 marks in total

3 marks 7a) f(R) = R because if x is the real cube root of y − 1 then
x3 + 1 = y. So f is surjective. Also f is injective because f is
strictly increasing.

4 marks b) f(x) = y ⇔ y =
2− x

x + 1
⇔ 2− x = xy + y ⇔ x(y + 1) = 2− y ⇔

x =
2− y

y + 1
– which is, in fact, f(y). Now

2− y

y + 1
is defined for y ∈ R

⇔ y 6= −1. So the image of f is (−∞,−1) ∪ (−1,∞) 6= R and f
is not surjective. However, f is injective, because, for any y 6= −1,

the only value of x for which f(x) = y is x =
2− y

y + 1
.

Note that in this example, the function f is its own inverse, but
this does not always happen.

7 marks in total
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3 marks 8a) Since the image of the map f(x) = ex + 1 is the set (1,∞), a
conditional definition of this set is {x ∈ R : x > 1}.

3 marks
b) For n ∈ Z

2|n ∧ 3|n⇔ 6|n⇔ ∃k ∈ Z such that n = 6k.

So a constructive definition of this set is {6k : k ∈ Z}.
6 marks in total

1 mark 9a)This is an increasing sequence since 3(n+1)+2 = 3n+5 > 3n+2
for all integers n ≥ 1.

3 marks b) xn = n2 − 3n − 4 = (n + 1)(n − 4). So n + 1 > 0 for all n ≥ 1
and both n + 1 and n− 4 are increasing with n. It follows that xn

is increasing.

2 marks c) xn =
(−)n

n2 + 1
is neither increasing nor decreasing, since the terms

are alternatively strictly positive and strictly negative.

6 marks in total
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Section B

4 marks
10. ∼ is reflexive if

x ∼ x∀x ∈ X

∼ is symmetric if

x ∼ y ⇒ y ∼ x ∀ x, y ∈ X.

∼ is transitive if

(x ∼ y ∧ y ∼ z) ⇒ x ∼ z ∀ x, y, ∈ X.

3 marks
a) ∼ is reflexive because x−x = 0 ∈ Z for all x ∈ Q. It is symmetric
because if x − y ∈ Z then y − x = −(x − y) ∈ Z. It is transitive
because if x−y ∈ Z and y−z ∈ Z then x−z = (x−y)+(y−z) ∈ Z.
So ∼ is an equivalence relation.

1 mark b) ∼ is not reflexive because, for example, if x =
1

2
∈ Q, then

x− 2x = −1

2
/∈ Z. So ∼ is not an equivalence relation

4 marks c) If f is any polynomial with real coefficients, f ∼ f because
f − f = 0 is a real constant. So ∼ is reflexive.
If f and g are any polynomials with real coefficients, f ∼ g ⇔
f − g = c ∈ R ⇔ g − f = −c ∈ R ⇒ g ∼ f . So ∼ is symmetric.
If f , g and h are any polynomials with real coefficients, and f ∼ g
and g ∼ h, then f − g = c1 ∈ R and g − h = c2 ∈ R and hence
f − h = c1 + c2 ∈ R and f ∼ h So ∼ is transitive
Hence ∼ is an equivalence relation.

3 marks The equivalence class of f1 is all polynomials x + c, for c ∈ R.
The equivalence class of f2 is all constant polynomials, that is, all
polynomials of the form c, for c ∈ R.

15 marks in total
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1 mark 11a) Base Case x0 = 1 = 2 ·30−1, so the formula holds for n = 0.
4 marks Inductive Step Assume that xn = 2 · 3n − 1. Then, using the

definition for the first equality,

xn+1 = 3xn + 2 = 3(2 · 3n − 1) + 2 = 2 · 3n+1 − 3 + 2 = 2 · 3n+1 − 1.

So
xn = 2 · 3n − 1 ⇒ xn+1 = 2 · 3n+1 − 1.

1 mark So by induction xn = 2 · 3n − 1 holds for all n ∈ N.
1 mark b) Base Case If n = 1, any function f : {1} → R attains its

maximum at 1, because, trivially, f(i) ≤ f(1) for all i with 1 ≤ i ≤
1 (that is, for i = 1).

5 marks Inductive Step Let n ∈ Z+, and assume that any real-valued
function with domain {i ∈ Z+ : 1 ≤ i ≤ n} attains a maximum
value. Now let f : {i ∈ Z+ : 1 ≤ i ≤ n + 1} → R be any function.
Then the restriction of this function to {i ∈ Z +: 1 ≤ i ≤ n} does
attain its maximum, that is, there is k1 ∈ Z+ with 1 ≤ k1 ≤ n
such that f(i) ≤ f(k1) for all 1 ≤ i ≤ n. Now define k = k1
if f(n + 1) ≤ f(k1) and k − n + 1 if f(k1) < f(n + 1). Then
f(i) ≤ f(k) for all 1 ≤ i ≤ n + 1, that is, f attains its maximum.
So

True for n ⇒ True for n + 1.

1 mark So by induction, for any n ∈ Z+, any function f : {k ∈ Z+ : 1 ≤
k ≤ n} → R attains its maximum.

2 marks An example of a function f : Z+ → [0, 1] which does not attain its
maximum is the function f defined by

f(n) = 1− 1

n

for all n ∈ Z+, because limn→∞ f(n) = 1, but 1 6= f(k) for any
k ∈ Z+.

15 marks in total

5



3 marks 12(i) |E ∪ T ∪M | = |E| + |T | + |M | − |E ∩ T | − |T ∩M | − |E ∩
M |+ |E ∩ T ∩M |.

4 marks
(ii)The number of people going on at least two tours is

|(E ∩ T ) ∪ (T ∩M) ∪ (E ∩M)|.

The intersection of any two of the sets E ∩ T , T ∩M , E ∩M is
E ∩ T ∩ M . So the intersection of all three of these sets is also
E ∩ T ∩M . Applying the inclusion-exclusion principle we have

|(E ∩ T ) ∪ (T ∩M) ∪ (E ∩M)|

= |E ∩ T |+ |T ∩M |+ |E ∩M | − 3|E ∩ T ∩M |+ |E ∩ T ∩M |

= |E ∩ T |+ |T ∩M |+ |E ∩M | − 2|E ∩ T ∩M |.

4 marks
(iii) Adding the equations from (i) and (ii) the terms |E∩T |+ |T ∩
M |+ |E ∩M | cancel and we obtain

28 + 18 = 46 = 22 + 7 + 21− |E ∩M ∩ T | = 50− |E ∩M ∩ T |

So the number |E ∩M ∩ T | of people going on all three tours is 4.

4 marks
(iv)|E ∩ (T ∪M)| = 22− 6 = 16. Applying the inclusion-exclusion
principle to the two sets E ∩ T and E ∩M we have

16 = |E ∩M |+ |E ∩ T | − |E ∩M ∩ T | = 16 + |E ∩ T | − 4.

So the number of people going on both the London Eye and Tower
of London tours is

|E ∩ T | = 16− 12 = 4.

15 marks in total
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6 marks
13(i) A set A ⊂ Q is a Dedekind cut if

• A is nonempty, and bounded above,

• x ∈ A ∧ y < x⇒ y ∈ A

• A does not have a maximal element.

(ii)
1 mark (ii)a) Q is not bounded above, so not a Dedekind cut

2 marks (ii)b)
1

2
∈ Q but 0 /∈ A and 0 <

1

2
, so A is not a Dedekind cut

6 marks (iii) A is bounded above – by 3 for example because if a ≥ 3 then
a2 ≥ 9 > 5. and since x 7→ x2 is strictly increasing for x ≥ 0, if
a ∈ A and b < a then either b < 0 – in which case b ∈ A — or
0 ≤ b2 < a2 and so a ∈ A.
Also, 2 ∈ A, because 22 = 4 < 5.
Finally, A has no maximal element. For suppose a ∈ A and a ≥ 2.
If 0 < ε < 1 then (a+ ε)2 = a2 + 2aε+ ε2 < a2 + 3aε. If in addition

ε <
5− a2

3a
then 3aε ≤ 5−a2 and hence (a+ ε)2 < 5. If in addition

ε ∈ Q, then a+ ε ∈ Q and a+ ε ∈ A. So a is not maximal in A for
any a ∈ A, and A does not have a maximal element. So A satisifies
all the conditions of (i), and A is a Dedekind cut.

15 marks in total

1 mark 14. A is finite if either A is empty or there is n ∈ Z+ and a bijection
f : {k ∈ Z+} → A.

2 marks A is countable if either A is finite or there is a bijection f : N→ A
(or a bijection from Z+ to A)

2 marks A and B has the same cardinality if there is a bijection f : A→ B.
2 marks R is uncountable and Z and Q are countable.
3 marks Schröder-Bernstein Theorem: If A and B are two sets and there are

injective maps f : A → B and g : B → A then there is a bijection
h : A→ B.

2 marks If f is given by f(x, 0) = ex and f(0, y) = −ey for y 6= 0 then the set
of values of f(x, 0) is (0,∞) and the set of values of f(0, y) for y 6= 0
is (−∞,−1)∪(−1, 0), because ex is increasing and −ey is decreasing
and −e0 = −1. So altogether the image of f is (−∞,−1)∪(−1, 0)∪
(0,∞).

3 marks Since f is injective restricted to R× {0} and {0} × (R \ {0}), and
the images of these two sets are disjoint, the map f is injective on
X. Also g : R → X defined by g(x) = (x, 0) is injective. So there
is a bijection h : X → R by the Schröder-Bernstien Theorem.

15 marks in total
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