Solutions to MATH105 exam January 2012
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Section A

1.a) For any real number z, % + 2z + 1 > 0.

This is true because 2? +2x +1 = (z+1)?, and the square of a real
number is always greater than or equal to 0.

b) There exists an integer n such that n < p for all integers p.
This is clearly false, because whatever n is, if p = n—1 then n > p.
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2a)r > 0Nz < 2.
b) 3z € (0,1) such that x < sinz.
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3a) —4< -3<-land6<7<8 So[-3,7]N(—1,8)N[-4,6] =
1(3;%[—6]4 UG, 8)N[2,3] = ([—4, 1]N[2, 3)U((3,8)N[2.3]) = BUD =
gj (=5,1] N (2,6) = 0 = (3,7) N [=3,0]. So

([=5,1Ju(3,7))N([=3,0]U(2,6)) = [-5,1]N[=3,0)U((3,7)N(2,6))

— [-3,0] U (3,6).
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Ja) B’ +1>2 S’ +r-2>0& (z+2)(z—1) >0

& (42> 0A2—1>0)V(z+2 < 0Az—1<0) &z >1Ve < —2.

b) 22+ 2 +2= (z+3)?+ % >0forall 2 € R. So there are no
solutions, that is, the set of solutions is empty.
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5. To start the induction, 2 -3°=2—-1=1 So x,, = 2 — 3" holds

for n = 0.

Now suppose inductively that x, = 2 — 3". Then
Tpy1 =32, —4=302-3")—4=6-3""—4=2—3"

So true for n implies true for n + 1 and x,, = 2 — 3™ is true for all
n € N.
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6.
1 0[572 Rl;Rz 1 —1(187 . 1 —1(187
0 11385 0 11385 R, — 2R, —2 311

Ry —_3732 35 —52‘0
-2 3111

As a result of this:

(i) the g.c.d. d is 11;

(ii) from the first row of the last matrix, r = 52 and s = 35;

(iii) from the second row of either of the last two matrices m = —2
and n = 3;

(iv) The Le.m. is 572 x 35 = 20020.
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7 f: X — Y is injective if Vq, z9 € X, f(x1) = f(z2 & 21 = 9.
The image of f, Im(f) is {f(x) : x € X}. f is a bijection if [ is
injective and Im(f) =Y, that is, f is also surjective

a) Since f is strictly decreasing on (0, 00), it is injective. For all
z € (0,00),we have 272 > 0, and 27> = y & = = 1/,/y. So
Im(f) = (0, 00).

b) f is not injective, since sin?(—z) = (—sinz)? = sin?x. For all x
we have —1 <sinx < 1, and sin([0, 7/2]) = [0, 1]. So Im(f) = [0, 1].
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8. [A; U Ao| = |Ay| + | As| — A1 O Ay

(i) If A} and A, are the sets of retailers selling Series 1 and 2
respectively, then |A; U Ay| = 10 and |A;| = 9 and |Ay] = 8, then
the inclusion/exclusion principle gives |[A; N Ay =948 — 10 = 7.
Then the number of retailers selling only Series 1 is |A;|—|A1NAs| =
9 — 7 = 2 and the number selling only Series 2 is |Ag| — |41 N Ay| =
8—7=1

(ii) Let A3 denote the set of retailers selling Series 3. Since this is
included in the original set of 10 retailers, we have A3 C A; U As,
and every retailer which sells Series 3 also sells at least one of Series
1 and 2. So if 6 of the retailers sell all three, there is one retailer
who sells Series 3 and exactly one other of Series 1 and 2. There
are 7 retailers who sell both Series 1 and Series 2, but only 6 of
these sell Series 3. So there is one retailer who sells just Series 1
and Series 2, and one other who sells Series 3 and just one other.
So altogether 2 retailers sell exactly 2 of the 3 series.
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Section B

9. ~ is reflexive if
x~avVreX

~ is symmetric if
r~y = y~a Ve ye X
~ is transitive if

(rt~yANy~z) = x~zVa y €X.

(i)n—n=0¢€Ziseven. Son ~nVn € Z and ~ is reflexive
If m ~ n then m —n = 2r for r € Z, and hence n — m = 2(—r)
is even and n ~ m. So ~ is symmetric If m ~ n and n ~ p,
then m —n = 2r and n — p = 2s for some r, s € Z, and hence
m—p=m-—n+(n—p)=2(r+s)is even. So ~ is transitive and
~ is an equivalence relation

For any m € 7Z, either m = 2p for some p € Z or m = 2q — 1
for some ¢ € Z —but not both. So either m ~ 0 or m ~ 1 — but
not both. So there are two equivalence classes, and 0 and 1 are
representatives.

(ii) f(z) = f(x) =0=0+0z. So f ~ fVf € X, and ~ is reflexive.
Now suppose that f(z) — g(x) = ap + ayx where ap and «; are
even. Then g(z) — f(x) = —ag — apx — 2?F(x) and —ap and —a
are even. So f ~ g = g~ [ and ~ is symmetric.

Now suppose also that g(x) — h(z) = 5y + S1x where 5y and [, are
even. Then

f(.ilﬁ) — h(x) = —{—ﬂo + (Oq +61)ZE
where ag + [y and a1 + [ are even. So
fr~gNg~h=f~h

and ~ is transitive.
So ~ is an equivalence relation.
Representatives of the four equivalence classes are

0, 1, =, x4+ 1.

because if f(x) = ¢y + c1x for ¢o, ¢; € Z then ¢y = 2dy or 1+ 2dy
for dy € Z — but not both — and ¢; = 2d; or 1 + 2d; for d;, € Z —
but not both — and hence exactly one of the following holds

f@)~0, f@)~1, f@)~a, fl@)~1+a.
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10(i) . Base case 1 =9 < 2. So 1 <z, < 2 is true for n = 0.
Inductive step Now fix n € N and suppose that 1 < z,, < 2. Then
4 <34z, <band

7 7
1< =< - <2
5 34z, 4
So
1=3-2<z,41=3-— <3-1=2.
= Tt 3+,

Sol<x, <2 = 1<z, <2
So by induction 1 < x,, < 2 holds for all n € N.

(i)
7(3 + L+l — 3 — l‘n)
(B34 zpi1)(3+ )

7 n 7
3+z,

Tpto2 = Tpgp1 =3 — 5——— —
3+xn+1

7(In+1 - xn)
B+ 2,3+ Tpy1)

The denominator of the expression on the right-hand side is > 0 by
(i), because =, > 0 and x,.1 > 0. So T, < Tyl = Tpr1 < Tpio.
We have zg < 21 = g. So the base case of x,, < z,41 for n =0
holds and the inductive step has just been proved. So by induction
Tp < Tpy for all n € N and z,, is an increasing sequence.
(iii) Base case

5 1
So the required upper bound on |z,; — x,| holds for n = 0.
Inductive step Now suppose that the required upper bound holds
on |Z,41 — z,|. Then we use the formula for |z, o — z,41| at the
start of (ii). We also use the bounds =, > 1 and z,,1; > 1 to deduce

B4+ 2,)(34+ zp41) >4 x 4 =16.
Then from (ii) we have

7|*Tn—l-1 - In|
34+ 2,)(3 + Tns1)

T (TN L (TN
—16 \16 4 \ 16 4

So the upper bound for |z,.; — x,| implies the upper bound for
|Zp12 — Ty, and by induction we have

1/ 7\"
|Tpi1 — x| < 1 (E)

7
|xn+2 - anrl‘ = < _‘anrl — Tn
( 16

for all n € N.
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11. A set A C Q is a Dedekind cut if
(i) A is nonempty, and bounded above,
(i) re ANyeQAy<z=ycA

(iii) A does not have a maximal element.

a) A= {r € Q:x <6.5} has amaximal element (6.5); So property
(iii) is violated and A is not a Dedekind cut.

(b) A ={x € Q: 7 < zx} is not bounded above — because, for
example, A contains all integers > 8. So property (i) is violated
and A is not a Dedekind cut.

A:{x:($—§)2<§}:{x:%—\/?g<x<g+§}.

So 0 ¢ Abut 3 € A (for example). So property (ii) is violated, and
A is not a Dedekind cut.
We check the properties of 24 one by one.
i) re2AnNy<r e 5c AN <= 4cA=yc2A
(i) A#Z0=Fr e A=z e 2A=24A+#0.
(iii) M,z < MVx € A=y <2MVy € A.

So 2A is bounded above.
EIbGQA,ySb‘V’yGQAégGA/\ng‘v’xeA

So as A does not have a maximal element, 2A does not either.

So 2A is a Dedekind cut.

By the second property of a Dedekind cut, if x € A then y € A for
all y € Q with y < x and hence z € —A for all z € Q with z > —ux.
So —A is not bounded above and is not a Dedekind cut.
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12. A'is finite if either A is empty, or, for some n € Z, there is a
bijection f : {k € N: k <n} — A. For a fixed set A, there is at
most one n € Z, for which such a bijection exists, and if there is
such an n then A is said to be of cardinality n. The empty set is
said to be of cardinality 0.

A is countable if either A is finite or there is a bijection f: N — A.

a) [0,1] is uncountable, and g : A — B is injective, where g(z) =
for all x € [0, 1]

b) [0, 1) is uncountable, and h : B — A is injective where h(z) =z
for all z € [0,1).

z
2

¢) Z is countable.

d) N? is countable.

The Schroder-Bernstein Theorem, says that if there exists an injec-
tive map g : A — B and an injective map h : B — A then there is
a bijection k : A — B. A composition of bijections is a bijection,
so if one of A and B is in bijection with N, the other one is too.
The set A, = {(m,n) € N*: m+n = p} can be written as {(m,p—
m): 0 <p<m}, for all p € N, and so has p + 1 elements, and is
therefore finite. Clearly we can write N*> = U* A, and therefore
N? is a countable union of finite sets.



