
Solutions to MATH105 exam January 2012

Section A

3 marks 1.a) For any real number x, x2 + 2x+ 1 ≥ 0.
This is true because x2 + 2x+ 1 = (x+ 1)2, and the square of a real
number is always greater than or equal to 0.

3 marks b) There exists an integer n such that n ≤ p for all integers p.
This is clearly false, because whatever n is, if p = n−1 then n > p.

Standard home-
work exercises
6 marks in total

2 marks 2a)x ≥ 0 ∧ x < 2.
2 marks b) ∃x ∈ (0, 1) such that x ≤ sinx.
Standard home-
work exercises
4 marks in total

2 marks 3a) −4 < −3 < −1 and 6 < 7 < 8. So [−3, 7] ∩ (−1, 8) ∩ [−4, 6] =
(−1, 6].

2 marks b) ([−4, 1]∪(3, 8])∩[2, 3] = ([−4, 1]∩[2, 3])∪((3, 8]∩[2, 3]) = ∅∪∅ =
∅.

2 marks c) [−5, 1] ∩ (2, 6) = ∅ = (3, 7) ∩ [−3, 0]. So

([−5, 1]∪(3, 7))∩([−3, 0]∪(2, 6)) = [−5, 1]∩[−3, 0])∪((3, 7)∩(2, 6))

= [−3, 0] ∪ (3, 6).

Standard home-
work exercises
6 marks in total

4 marks 4a) x2 + x > 2 ⇔ x2 + x− 2 > 0⇔ (x+ 2)(x− 1) > 0

⇔ (x+2 > 0∧x−1 > 0)∨(x+2 < 0∧x−1 < 0)⇔ x > 1∨x < −2.

2 marks b) x2 + x + 2 = (x + 1
2
)2 + 7

4
> 0 for all x ∈ R. So there are no

solutions, that is, the set of solutions is empty.
Standard home-
work exercises.
6 marks in total
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1 marks 5. To start the induction, 2− 30 = 2− 1 = 1 So xn = 2− 3n holds
for n = 0.

4 marks

Now suppose inductively that xn = 2− 3n. Then

xn+1 = 3xn − 4 = 3(2− 3n)− 4 = 6− 3n+1 − 4 = 2− 3n+1.

So true for n implies true for n + 1 and xn = 2− 3n is true for all
n ∈ N.

Standard home-
work exercise
5 marks in total

6.

1 0
0 1

∣∣∣572
385

R1 −R2

→ 1 −1
0 1

∣∣∣187
385

→
R2 − 2R1

1 −1
−2 3

∣∣∣187
11

R1 − 17R2

→ 35 −52
−2 3

∣∣∣ 0
11

4 marks

As a result of this:
1 mark (i) the g.c.d. d is 11;
1 mark (ii) from the first row of the last matrix, r = 52 and s = 35;
1 mark (iii) from the second row of either of the last two matrices m = −2

and n = 3;
2 marks (iv) The l.c.m. is 572× 35 = 20020.
Standard home-
work exercise
9 marks in total

2 marks 7 f : X → Y is injective if ∀x1, x2 ∈ X, f(x1) = f(x2 ⇔ x1 = x2.
3 marks The image of f , Im(f) is {f(x) : x ∈ X}. f is a bijection if f is

injective and Im(f) = Y , that is, f is also surjective
3 marks a) Since f is strictly decreasing on (0,∞), it is injective. For all

x ∈ (0,∞),we have x−2 > 0, and x−2 = y ⇔ x = 1/
√
y. So

Im(f) = (0,∞).
2 marks b) f is not injective, since sin2(−x) = (− sinx)2 = sin2 x. For all x

we have−1 ≤ sinx ≤ 1, and sin([0, π/2]) = [0, 1]. So Im(f) = [0, 1].
Standard theory
followed by stan-
dard homework
exercises
10 marks in total
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standard theory
2 marks

8. |A1 ∪ A2| = |A1|+ |A2| − |A1 ∩ A2|

standard home-
work exercise
3 marks

(i) If A1 and A2 are the sets of retailers selling Series 1 and 2
respectively, then |A1 ∪ A2| = 10 and |A1| = 9 and |A2| = 8, then
the inclusion/exclusion principle gives |A1 ∩ A2| = 9 + 8− 10 = 7.
Then the number of retailers selling only Series 1 is |A1|−|A1∩A2| =
9− 7 = 2 and the number selling only Series 2 is |A2| − |A1 ∩A2| =
8− 7 = 1

unseen
4 marks
Part marks will
be given for an
answer which
recognises some
possibilities
without giving
the general
solution.

(ii) Let A3 denote the set of retailers selling Series 3. Since this is
included in the original set of 10 retailers, we have A3 ⊂ A1 ∪ A2,
and every retailer which sells Series 3 also sells at least one of Series
1 and 2. So if 6 of the retailers sell all three, there is one retailer
who sells Series 3 and exactly one other of Series 1 and 2. There
are 7 retailers who sell both Series 1 and Series 2, but only 6 of
these sell Series 3. So there is one retailer who sells just Series 1
and Series 2, and one other who sells Series 3 and just one other.
So altogether 2 retailers sell exactly 2 of the 3 series.

Standard home-
work exercise
9 marks in total
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Section B

Theory from lec-
tures
3 marks

9. ∼ is reflexive if
x ∼ x∀x ∈ X

∼ is symmetric if

x ∼ y ⇒ y ∼ x ∀ x, y ∈ X.

∼ is transitive if

(x ∼ y ∧ y ∼ z) ⇒ x ∼ z ∀ x, y, ∈ X.

Standard home-
work exercise
3 marks

(i) n − n = 0 ∈ Z is even. So n ∼ n ∀n ∈ Z and ∼ is reflexive
If m ∼ n then m − n = 2r for r ∈ Z, and hence n − m = 2(−r)
is even and n ∼ m. So ∼ is symmetric If m ∼ n and n ∼ p,
then m − n = 2r and n − p = 2s for some r, s ∈ Z, and hence
m− p = m− n+ (n− p) = 2(r+ s) is even. So ∼ is transitive and
∼ is an equivalence relation

Standard home-
work exercise
2 marks

For any m ∈ Z, either m = 2p for some p ∈ Z or m = 2q − 1
for some q ∈ Z —but not both. So either m ∼ 0 or m ∼ 1 – but
not both. So there are two equivalence classes, and 0 and 1 are
representatives.

Standard home-
work exercise
4 marks

(ii) f(x)− f(x) = 0 = 0 + 0x. So f ∼ f∀f ∈ X, and ∼ is reflexive.
Now suppose that f(x) − g(x) = α0 + α1x where α0 and α1 are
even. Then g(x)− f(x) = −α0 − α1x− x2F (x) and −α0 and −α1

are even. So f ∼ g ⇒ g ∼ f and ∼ is symmetric.
Now suppose also that g(x)− h(x) = β0 + β1x where β0 and β1 are
even. Then

f(x)− h(x) = α0 + β0 + (α1 + β1)x

where α0 + β0 and α1 + β1 are even. So

f ∼ g ∧ g ∼ h⇒ f ∼ h

and ∼ is transitive.
So ∼ is an equivalence relation.

Standard ex-
ercise not
previously set
3 marks

Representatives of the four equivalence classes are

0, 1, x, x+ 1.

because if f(x) = c0 + c1x for c0, c1 ∈ Z then c0 = 2d0 or 1 + 2d0
for d0 ∈ Z – but not both – and c1 = 2d1 or 1 + 2d1 for d1 ∈ Z –
but not both – and hence exactly one of the following holds

f(x) ∼ 0, f(x) ∼ 1, f(x) ∼ x, f(x) ∼ 1 + x.

15 marks in total
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Standard
(harder) home-
work exercise
4 marks

10(i) . Base case 1 = x0 < 2. So 1 ≤ xn < 2 is true for n = 0.
Inductive step Now fix n ∈ N and suppose that 1 ≤ xn < 2. Then
4 ≤ 3 + xn < 5 and

1 <
7

5
<

7

3 + xn
≤ 7

4
< 2.

So

1 = 3− 2 ≤ xn+1 = 3− 7

3 + xn
< 3− 1 = 2.

So 1 ≤ xn < 2 ⇒ 1 < xn+1 < 2.
So by induction 1 ≤ xn < 2 holds for all n ∈ N.

Calculation
2 marks

(ii)

xn+2 − xn+1 = 3− 7

3 + xn+1

− 3 +
7

3 + xn
=

7(3 + xn+1 − 3− xn)

(3 + xn+1)(3 + xn)

=
7(xn+1 − xn)

(3 + xn)(3 + xn+1)
.

Some simi-
larities with
exercises set
4 marks

The denominator of the expression on the right-hand side is > 0 by
(i), because xn > 0 and xn+1 > 0. So xn < xn+1 ⇒ xn+1 < xn+2.
We have x0 < x1 = 5

4
. So the base case of xn < xn+1 for n = 0

holds and the inductive step has just been proved. So by induction
xn < xn+1 for all n ∈ N and xn is an increasing sequence.

Standard home-
work problem on
induction.
5 marks

(iii) Base case

|x1 − x0| =
∣∣∣∣54 − 1

∣∣∣∣ =
1

4
.

So the required upper bound on |xn+1 − xn| holds for n = 0.
Inductive step Now suppose that the required upper bound holds
on |xn+1 − xn|. Then we use the formula for |xn+2 − xn+1| at the
start of (ii). We also use the bounds xn ≥ 1 and xn+1 ≥ 1 to deduce

(3 + xn)(3 + xn+1) ≥ 4× 4 = 16.

Then from (ii) we have

|xn+2 − xn+1| =
7|xn+1 − xn|

(3 + xn)(3 + xn+1)
≤ 7

16
|xn+1 − xn|

≤ 7

16
·
(

7

16

)n

· 1

4
=

(
7

16

)n+1

· 1

4
.

So the upper bound for |xn+1 − xn| implies the upper bound for
|xn+2 − xn+1|, and by induction we have

|xn+1 − xn| ≤
1

4

(
7

16

)n

for all n ∈ N.
15 marks in total
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Theory from lec-
tures
5 marks

11. A set A ⊂ Q is a Dedekind cut if

(i) A is nonempty, and bounded above,

(ii) x ∈ A ∧ y ∈ Q ∧ y < x⇒ y ∈ A

(iii) A does not have a maximal element.

Similar to home-
work exercises
1 mark a) A = {x ∈ Q : x ≤ 6.5} has a maximal element (6.5)¿ So property

(iii) is violated and A is not a Dedekind cut.
1 mark (b) A = {x ∈ Q : 7 < x} is not bounded above – because, for

example, A contains all integers ≥ 8. So property (i) is violated
and A is not a Dedekind cut.

3 marks c)

A =

{
x : (x− 3

2
)2 <

5

4

}
=

{
x :

3

2
−
√

5

2
< x <

3

2
+

√
5

2

}
.

So 0 /∈ A but 3
2
∈ A (for example). So property (ii) is violated, and

A is not a Dedekind cut.

Special case of
theory from lec-
tures
4 marks

We check the properties of 2A one by one.

(i) x ∈ 2A ∧ y < x⇔ x
2
∈ A ∧ y

2
< x

2
⇒ y

2
∈ A⇒ y ∈ 2A.

(ii) A 6= ∅ ⇒ ∃x ∈ A⇒ ∃2x ∈ 2A⇒ 2A 6= ∅.

(iii) ∃M,x ≤M∀x ∈ A⇒ y ≤ 2M∀y ∈ A.

So 2A is bounded above.

∃b ∈ 2A, y ≤ b∀y ∈ 2A⇒ b

2
∈ A ∧ x ≤ b

2
∀x ∈ A

So as A does not have a maximal element, 2A does not either.
So 2A is a Dedekind cut.

Theory from lec-
tures, but only
incidentally, so
unseen.
1 mark

By the second property of a Dedekind cut, if x ∈ A then y ∈ A for
all y ∈ Q with y < x and hence z ∈ −A for all z ∈ Q with z > −x.
So −A is not bounded above and is not a Dedekind cut.

15 marks in total
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Theory from lec-
tures
4 marks

12. A is finite if either A is empty, or, for some n ∈ Z+, there is a
bijection f : {k ∈ N : k < n} → A. For a fixed set A, there is at
most one n ∈ Z+ for which such a bijection exists, and if there is
such an n then A is said to be of cardinality n. The empty set is
said to be of cardinality 0.
A is countable if either A is finite or there is a bijection f : N→ A.

Standard exam-
ples
2 marks a) [0, 1] is uncountable, and g : A→ B is injective, where g(x) = x

2

for all x ∈ [0, 1]
1 mark b) [0, 1) is uncountable, and h : B → A is injective where h(x) = x

for all x ∈ [0, 1).
Theory from lec-
tures
Standard exam-
ples
1 mark c) Z is countable.
1 mark d) N2 is countable.
2 marks The Schroder-Bernstein Theorem, says that if there exists an injec-

tive map g : A→ B and an injective map h : B → A then there is
a bijection k : A → B. A composition of bijections is a bijection,
so if one of A and B is in bijection with N, the other one is too.

Theory from lec-
tures, but should
be regarded as
unseen. No
memorising
required or
desired.
4 marks

The set Ap = {(m,n) ∈ N2 : m+n = p} can be written as {(m, p−
m) : 0 ≤ p ≤ m}, for all p ∈ N, and so has p + 1 elements, and is
therefore finite. Clearly we can write N2 = ∪∞p=0Ap and therefore
N2 is a countable union of finite sets.

15 marks in total
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