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1.

a) There is no inverse function because f is not a bijection: in fact f is neither injective nor surjective.

b) f−1 : [0,∞)→ (−∞, 0] is defined by f−1(x) = −
√
x

By convention,
√
x means +

√
x. The codomain of f−1 is (−∞, 0], so f−1(x) = −

√
x.

c)

y =
1

x + 2
⇔ yx + 2y = 1 ⇔ xy = 1− 2y ⇔ x =

1− 2y

y

So f−1(x) =
1− 2x

x
.

d)
2ex = y ⇔ x = ln(y/2).

So f−1(x) = ln(x/2) = lnx− ln 2.

Marks were deducted if the inverse was not given explicitly,that is, if there was no statement such as “f−1(x) =

ln(x/2)”. Marks were also deducted for statements such as “f−1(x) = ln(y/2)”. Both “f−1(x) = ln(x/2)” and

“f−1(y) = ln(y/2)” are correct, however.

2. Let C, D and H be the sets of children owning cats, dogs and hamsters respectively. Then

|C| = |D| = 15, |H| = 10, |C ∪D ∪H| = 22,

|C ∩D| = 8, |C ∩H| = 6, |D ∩H| = 5.

a) By the Inclusion-Exclusion Principle for 3 sets,

22 = 15 + 15 + 10− 8− 6− 5 + |C ∩D ∩H|

So the number of children in C ∩D ∩H, that is, with all three pets, is 22− 40 + 19 = 1

b) This means that, using the Inclusion-Exclusion Principle for 2 sets,

|D ∩ (C ∪H)| = |(D ∩ C) ∪ (D ∩H)| = |D ∩ C|+ |D ∩H| − |D ∩ C ∩H| = 5 + 8− 1 = 12,

using (D ∩ C) ∩ (D ∩H) = D ∩ C ∩H. So the number of children with just a dog is 15− 12 = 3.

Alternatively, since all the pets are dogs, cats or hamsters, the number of children with just a dog is

|D ∪C ∪H| − |C ∪H| = |D ∪C ∪H| − (|C|+ |H| − |C ∩H|) = 22− (15 + 10− 6) = 22− 25 + 6 = 3.

This method also uses the Inclusion-Exclusion Principle for 2 sets.

c) Similarly
|C ∩ (H ∪D)| = |C ∩H|+ |C ∩D| − |C ∩H ∩D| = 6 + 8− 1 = 13

So the number of children with a cat and one other pet is 13 and the number with just a cat is
15− 13 = 2.

Alternatively, the number of children with just a cat is

|C ∪D ∪H| − |C ∪H| = |C ∪D ∪H| − (|D|+ |H| − |D ∩H|) = 22− (15 + 10− 5) = 22− 25 + 5 = 2.



d) Similarly
|H ∩ (C ∪D)| = |H ∩ C|+ |H ∩D| − |H ∩ C ∩D| = 6 + 5− 1 = 10

So every child with a hamster also has either a cat of a dog and no child just has a hamster.

Alternatively, the number of children with just a hamster is

|C ∪D ∪H| − |C ∪D| = |C ∪D ∪H| − (|C|+ |D| − |C ∩D|) = 22− (15 + 15− 8) = 22− 30 + 8 = 2.

All the solutions shown here use the Inclusion-Exclusion Principle for two or three sets. I did require some

explanation of how formulas were derived for full marks, at least for the first calculation. It is possible to simply

draw the Venn diagram and solve the linear equations, and I saw a number of solutions that used aVenn diagram.

I accepted this if the diagram was clear and if it was clear what the numbers represented in each region. Be careful

to distinguish between a set like H (in this example, the set of children with hamsters) and the number of elements

in H, which is denoted by |H|

3.

a)
x ∈ f−1(B ∪ C)⇔ f(x) ∈ B ∪ C ⇔ fIx) ∈ B ∨ f(x) ∈ C ⇔ x ∈ f−1(B) ∪ f−1(C).

So f−1(B ∪ C) = f−1(B) ∪ f−1(C)

b)
x ∈ f−1(B ∩ C)⇔ f(x) ∈ B ∩ C ⇔ f(x) ∈ B ∧ f(x) ∈ C ⇔ x ∈ f−1(B) ∩ f−1(C).

So f−1(B ∪ C) = f−1(B) ∩ f−1(C)

It is only when f is a bijection that the inverse function f−1 exists and that f−1(B) = {f−1(y) : y ∈ B}. The

general definition f−1(B) = {x ∈ X : f(x) ∈ B} works for any function f : X → Y . Be careful to distinguish

between ∪ and ∨, and between ∩ and ∧. In both cases these pairs of symbols are related, but they are used in slightly

different ways. For example ∪ means “the union of”(for sets ) and ∨ means “or”. So the set B ∪ C, for example

, is the set of elements which are in B or C (possibly both), that is, B ∪ C = {x : x ∈ B ∨ x ∈ C}

4. Base case We have x0 = 1 and 12 < 3, so xn ≥ 1 and x2n < 3 are true for n = 0.
Inductive step Now suppose that xn ≥ 1 and x2n < 3. Then xn ≥ 1 ⇒ 2xn + 3 ≥ xn + 5 > xn + 2 0

and hence xn+1 =
2xn + 3

xn + 2
≥> 1.

Also

x2n+1 − 3 =

(
2xn + 3

xn + 2

)2

− 3 =
4x2n + 12xn + 9− 3x2n − 12xn − 12

(xn + 2)
=

x2n − 3

(xn + 2)2
< 0

So
(1 ≤ xn) ∧ (x2n < 3)⇒ (1 < xn+1) ∧ (x2n+1 < 3)

So by induction 1 ≤ xn and x2n < 3 for all n ∈ N.
There are still some misconceptions on Induction in some quarters but I hope they are decreasing. Perserverance

is what counts. Don’t give up, and you will get there. This was not the easiest example.

• The natural base case to take in this example is n = 0 since 1 ≤ 1 = x0 and 1 = x2
0 < 3. It is not wrong to

take n = 1 or 2 as base but it is more work and it is unnecessary.

• I still saw some backwards working. the inductive step is assume that 1 ≤ xn and deduce that 1 ≤ xn+1,
not the other way round.

• I saw some confusion about notation that I could not quite figure out but it appeared that some people find
inductive definitions difficult. I saw some cases where people were working with xn+2 instead of xn+1. There
were also one or two where xn was confused with n.



• In order to deduce from 1 ≤ xn that 1 ≤ 2xn + 3

xn + 2
it is simplest to use 0 < xn + 2 ≤ 2xn + 3 – which is of

course true, even if we just have xn ≥ 0 (or even xn ≥ −1). It is possible to use the fact that
2x + 3

x + 2
is an

increasing function and hence xn ≥ 1⇒ xn+1 ≥ (2 + 3)/(1 + 2) = 5/3. But I only accepted this method if it

was checked that
2x + 3

x + 2
is an increasing function, for example by showing that

2x + 3

x + 2
= 2− 1

x + 2

and noting that
1

x + 2
is decreasing.

• In part b), to show that x2
n+1 < 3, the formula for xn+1 is

x2
n+1 =

(2xn + 3)2

(xn + 2)2
=

4x2
n + 12xn + 9

x2
n + 4xn + 4

Don’t forget the cross terms!

I think you may have seen similar examples in MATH101, and limn→∞ xn =
√

3. The equation

x =
2x + 3

x + 2

has solutions x = ±
√

3 and we know that xn ≥ 1 for all n. But this was not part of the question.

Solutions to Practice Problems

5.

a) The inverse does not exist, because f is not surjective. In fact, since (as shown in lectures)

1 + x + x2 =

(
x +

1

2

)2

+
3

4

Im(f) = [3/4,∞).

b) This time

y = 1 + x + x2 ⇔ y − 3

4
=

(
x +

1

2

)2

⇔ x = −1

2
+

√
y − 3

4

So f−1 : [3/4,∞)→ [−1/2,∞) is defined by

f−1(y) = −1

2
+

√
y − 3

4
.

c) We have

y =
1

x + 1
⇔ xy + y = 1 ⇔ x =

1

y
− 1

from which we see that x > −1⇔ y > 0. So f−1 : (0,∞)→ (−1,∞) does exist and is defined by

f−1(y) =
1

y
− 1.

6. Let P , C and T denote the sets of plots growing, potatoes, courgettes and tomatoes respectively.



a) The inclusion-exclusion principle for three sets says that

|P ∪ C ∪ T | = |P |+ |C|+ |T | − |P ∩ C| − |P ∩ T | − |C ∩ T |+ |P ∩ C ∩ T |,

that is
20 = 15 + 12 + 10− 8− 7− 6 + |P ∩ C ∩ T |

that is |P ∩ C ∩ T | = 4, that is, 4 plots grow all 3 crops.

b) The set of plots growing only potatoes is P \ (C ∪ T ) and

|P \ (C ∪ T )| = |P | − |P ∩ (C ∪ T )|.

Applying the inclusion-exclusion principle for two sets to the sets P ∩ C and P ∩ T , we have

|P ∩ (C ∪ T )| = |P ∩ C|+ |P ∩ T | − |P ∩ C ∩ T | = 8 + 7− 4 = 11.

So |P \ (C ∪ T )| = 15− 11 = 4, that is, there are 4 plots on which only potatoes are grown.

c) Applying the inclusion-exclusion principle to the two sets P ∩ C = C ∩ P and C ∩ T , we have

|C ∩ (P ∪ T )| = |C ∩ P |+ |C ∩ T | − |C ∩ P ∩ T | = 8 + 6− 4 = 10.

So |C \ (P ∪ T ) = 12− 10 = 2, that is, there are two plots on which only courgettes are grown.

d) Applying the inclusion-exclusion principle to the two sets T ∩P = P ∩T and C ∩T = T ∩C, we have

|T ∩ (P ∪ C)| = |T ∩ P |+ |T ∩ C| − |T ∩ P ∩ C| = 7 + 6− 4 = 9.

So |T \ (P ∪ C) = 10− 9 = 1, that is, there is one plot on which only tomatoes are grown.

7.

a) If y ∈ f(f−1(B)) then y = f(x) for x such that f(x) ∈ B, that is, y ∈ B. So f(f−1(B)) ⊂ B

b) If x ∈ A then f(x) ∈ f(A) and hence x ∈ f−1(f(A)), that is A ⊂ f−1(f(A)).

If B is not contained in Im(f) then B cannot be equal to f(f−1(B)). For example if f : R → R is
defined by f(x) = x2 and B = R then f(f−1(B)) = f(R) = [0,∞). Using this same f we can produce
a set A such that A 6= f−1(f(A). If f(x1) = f(x2) and x1 ∈ A then x2 ∈ f−1(f(A)). So if we take
A = [0.∞) we have f−1(f(A)) = f−1([0,∞)) = R.

8. Base case We have x0 = 1 and 12 < 2, so xn ≥ 1 and x2n < 2 are true for n = 0.
Inductive step Now suppose that xn ≥ 1 and x2n < 3. Then xn ≥ 1⇒ 3xn+2 ≥ xn+4 > xn+3 > 0

and hence xn+1 =
3xn + 2

xn + 3
> 1.

Also

x2n+1 − 2 =

(
3xn + 2

xn + 3

)2

=
9x2n + 12xn + 4− 2x2n − 12xn − 18

(xn + 3)2
=

7x2n − 14

(xn + 3)2
=< 0

So
(1 ≤ xn) ∧ (x2n < 2)⇒ (1 < xn+1) ∧ (x2n+1 < 2)

So by induction 1 ≤ xn and x2n < 2 for all n ∈ N.



Extra question

9.

a)
A = (A \ (B ∪ C)) ∪ (A ∩B \ C) ∪ (A ∩ C \B) ∪ (A ∩B ∩ C).

B = (B \ (A ∪ C)) ∪ (B ∩A \ C) ∪ (B ∩ C \A) ∪ (A ∩B ∩ C).

C = (C \ (A ∪B)) ∪ (C ∩A \B) ∪ (B ∩ C \A) ∪ (A ∩B ∩ C).

A∪B∪C = (A\(B∪C))∪(B\(A∪C))∪(C\(A∪B))∪(A∩B\C)∪(A∩C\B)∪(B∩C\A)∪(A∩B∩C).

b) From these we obtain, since all the sets in each union are disjoint,

|A| = 75 = |A \ (B ∪ C)|+ |A ∩B \ C|+ |A ∩ C \B|+ |A ∩B ∩ C| (1)

|B| = 60 = |B \ (A ∪ C)|+ |A ∩B \ C|+ |B ∩ C \A|+ |A ∩B ∩ C| (2)

|C| = 45 = |C \ (A ∪B)|+ |B ∩ C \ C|+ |A ∩ C \B|+ |A ∩B ∩ C| (3)

100 = |A ∪B ∪ C| = |A \ (B ∪ C))|+ |B \ (A ∪ C)|+ |C \ (A ∪B)|
+|A ∩B \ C|+ |A ∩ C \B|+ |B ∩ C \A|+ |A ∩B ∩ C| (4)

Adding equations (1), (2) and (3) and then subtracting (4), we obtain

80 = |A ∩B \ C|+ |A ∩ C \B|+ |B ∩ C \A|+ 2|A ∩B ∩ C| (5)

From adding (1), (2) and (3) and rearranging, and using (5) we obtain

|A \ (B ∪ C)|+ |B \ (A ∪ C)|+ |C \ (A ∪B)|
= 180− 2(|A ∩B \ C|+ |A ∩ C \B|+ |B ∩ C \A|+ 2|A ∩B ∩ C|) + |A ∩B ∩ C|
= 20 + |A ∩B ∩ C|

(6)

The first line is the number of people speaking exactly one of English, Spanish or Swahili. From the
third line we see that maximising this number is the same as maximising |A ∩ B ∩ C|. But from (5)
we see that |A ∩B ∩ C| ≤ 40 and that if |A ∩B ∩ C| = 40 then

(A ∩B \ C) = (A ∩ C \B) = (B ∩ C \A) = (A ∩B ∩ C) = ∅.

From (1) (2) and (3) we then obtain

|A ∩B ∩ C| = 75− 40 = 35

|B \ (A ∪ C)| = 60− 40 = 20,

|C \ (A ∪B)| = 45 = 40 = 5

So the number of people speaking just English is 35, the number speaking just Spanish is 20 and the
number speaking just Swahili is 5. Altogether the number speaking just one language is 35+20+5 = 60.

c)
75 = |A| = |A \ (B ∪ C)|+ |A ∩ (B ∪ C)|,
B ∪ C| = |(B ∪ C) \A|+ |A ∩ (B ∪ C)|,

100 = |A ∪B ∪ C| = |A \ (B ∪ C)|+ |(B ∪ C) \A|+ |A ∩ (B ∪ C)| = 75 + |(B ∪ C) \A|
So

B ∪ C| = 25 + |A ∩ (B ∪ C)|,
So to maximise |A \ (B ∪ C)| we have to minimize |B ∪ C|. But |B ∪ C| is minimised when C ⊂ B,
that is, everyone who speaks Swahili also speaks Spanish, which means that

45|C| = |B ∩ C|

60 = |B| = |B ∪ C|
So nobody speaks just Swahili, 15 speak just Spanish, 15 speak English and one other language, and
60 speak just English.


