MATH105 Feedback and Solutions 3

1. Base case We have ag =3 =2' +1. So a,, = 2" + 1 is true for n = 0.
Inductive step Now suppose that a, = 2" + 1 for some n € N. Then

Upp1 =20, —1=22"" 4 1) —1=2""2 42 1 =2""2 11

So
an=2"" 4+ 1= a1 =2"2 41

So by induction a, = 2"*! + 1 for all n € N.

The inductive step is to assume a statement for n and prove a statement for n + 1. In this question
— which was probably found the easiest by most people — there was also an inductive definition of a,+1 in
terms of an, which was given, and which was any1 = 2a, — 1. Most answers that I saw understand what
was to be proved and what was given. The inductive definition an4+1 = 2a, — 1 was given and the formula
an = 2"t + 1 was to be proved, by induction, for all n € N. Most answers I saw did prove the formula,
or made a good attempt to prove it, but there were a few answers which assumed the formula and then
deduced the inductive definition from it.

Some people are writing the inductive step as “ true for n = k, implies forn = k + 1 ...hence true
for alln >0 (or 1 or 7) by induction.” This is fine, but is optional. I am not promoting it strongly
because there are more advanced induction questions in which induction is on two different integers, for
example. Also, do be careful not to miz up n and k in the same formula. Do not write, for example
“Cln+1 — 2(2k+l + 1) —17

Here is a repeat of the basic procedure in induction (See also sheet 2.)

Base case: prove “it” (whatever the statement is) for ny (whatever the first integer is)

Inductive step: Assume “it” is true for n (or k) where n (or k) is any fixed integer > ng and from
this assumption prove “it” is true forn+1 (or k+1)

Hence by induction “it” must be true for all n € N with n > ng.

This last “finishing off ” step was missing in some answers I saw. I am only giving full marks when
I can see something that I can recognise as “finishing off” - even though that is only one mark.

Induction works because of the nature of the set of integers. If a set includes an integer ng — the base
case — and includes n + 1 whenever if includes n, then it includes all integers > nyg.

2. We have
a; =1,
6a, + 5

——— kE€Z,.
a, + 2 *

An+1 =

(i) So a; > 0 (This is the base case. If a,, > 0 then a, +2 > 0 and 6a,, +5 > 0 and hence
a1 > 0 (This is the inductive step. So by induction a,, > 0 for all n > 1.

(ii) Clearly a; < 5 (This is the base case.) Now for the inductive step: assume inductively that
0<a, <5 Then O < a, +2 and

6a, +5 5a, + 10
< = 9.
a, + 2 ap + 2

Ap+1 =

So0<a, <5=0<a,; <5 and by induction 0 < a, <5 for alln > 1



Some people took the base case in this question as n = 2 — often without realising it. I think it must
have been because the base case n = 1 was so easy. The base case held because a1 = 1 satisfies 0 < 1 < 5.
I also saw a number of probably unintentional variants of the inductive step. One was “if true for n 4+ 1
then true for n+27. It is permissible to prove “True for n+1 if and only if true for n” in order to prove
“if true for n then true for n+ 1”7 but if this is done then the “if and only if” symbol < should be used.
For example: “Suppose that a, > 0. Then

6a, +5

Gn

nt1 <D & <5 6a,+5<dba,+10< a, <5

Hence 0 < ap, < 5 = apy1 < 5”7 The assumption that a, > 0 — or at least a, + 2 > 0 — is needed in

6a, + 5
C%+2<5towm+5<5%+40

order to pass from
n

3. 37 = 2187 and 7! = 5040. So 3" < n! is true for n = 7.

Now suppose that 3" < n! for some n € N with n > 7. Then 3" = 3 x 3" < 3 xn! <
(n+1)xn!l=Mm+1)!S03"<n!=3""" < (n+1) foralln € Nwithn>7

So by induction 3" < n! for all n € N with n > 7

4.

a) 104 = 8 x 13 = 23 x 13. So the positive divisors (this is what I meant) are 1, 2, 4, 8, 13,
26 =2x13,52=4x 13 and 104 =8 x 13.

b) 462 =2x231 =2x3x77=2x3x7x11. So the positive divisors are 1, 2, 3, 7, 11 6, 14,
22, 21, 33, 42, 66, 77, 154, 231, 462.

c) 3432 =8 x429 =8 x 3 x 143 =8 x 3 x 11 x 13. So the positive divisors are 2", 2" - 3, 2" - 11,
213, 2™-33, 2" -39, 2" - 143 and 2™ - 429, all for 0 < n < 3, that is, writing them in increasing
order.

1,2, 3, 4,6, 8, 11, 12, 13, 22, 24, 26, 33, 39, 44, 52, , 66, 78, 88, 104, 132, 143, 156, 264,
286, 312, 429, 572, 858, 1144, 1716, 3432.

The number of positive divisors is computed from the prime factorisation, thus, (3 4+ 1) x (14 1) in part
a)and (1+1)x (1+1)x (14+1)x (14+1) in part b) and (3+1) x (1+1) x (1+1) x (1 +1) in part c).
I did want all the divisors written down, and I think all the answers that I saw did recognise this.

5. We have
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1 nP+2n n+2
2 on+1 0 2n+1)
So if the formula holds for n it holds for n + 1 and hence by induction it holds for all n.

Unfamiliarity with product notation was, not surprisingly, a source of some difficulty with this ques-
tion. Product notation is very similar to sum notation. So

g(l—é>:<l—§z)x(l_gg)x.x<1_;>

and



Solutions to Practice Problems

6. When n =2

"+’ =4+44=8<9=3"
So 2" 4+ n? < 3" is true for n = 2. Now assume it is true for some n € N with n > 2. Then using
(n+1)* < In?,

9 1
2”+1+(n+1)2§2”—|—2”+1n2:2><(2”+n2)+1n2<3(2”+n2)<3~3":3”+1.

So 2" +n? < 3" = 2" 4 (n+1)? < 3" for all n € N with n > 2. So by induction, 2" +n? < 3"
for all n € N with n > 2.

7. When n = 0 we have ap = 2 = 3 + 1. So a, = 3" + 1 is true for n = 0. Now assume that
a, = 3"+ 1 for some n € N. Then a,,; = 3a, —2 = 3(3"+1) — 2 = 3" + 1. So by induction
the formula a,, = 3™ + 1 holds for all n € N.

8. We have % <ay=1. So % < a, <1 when n = 0. Now assume this holds for some n € N.

We want to deduce it for n + 1. If a,, > % then 3a, +1 > % > 0. and 3a,, + 1 > a,, + 1. So it is
certainly true that

an + 1 -1
3a, + 1
Since 3a,, + 1 > 0 we have
1 n+1
S Mt L 3g 4 1<20, 425 a, < 1.
27 3a,+1
So
a, <1= < Qp+1
and

< an
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So by induction % <a, <1forall neN.
9. From the definition of multiplication, and m - 1 = m we have
m-(n+1l)=m-n+m=m-n+m-1

Som-(n+p)=m-n+m-pis true for p = 1.
Now assume inductively that it is true for p. Then

m-(n+(p+1))=m-(n+p)+1)=m-(n+p)+m-1=(m-n+m-p)+m.

The first equality uses associativity of addition and the second uses the inductive definition of
multiplication and the third uses the inductive hypothesis and m - 1 = m. But then

(m-n+m-p)+m=m-n+(m-p+m)=m-n+m-(p+1)

where the first equality uses associativity of multiplication and the second uses the inductive
definition of multiplication. This completes the proof that

(m-(n+p)=m-n+m-p) = (m-n+(p+1)=m-n+m-(p+1))

So by induction
m-(n+p)=m-n+m-p
forall m, n,p e Z,.



