
The proof of the following is from wikipedia on 9 December 2010. See

http://en.wikipedia.org/wiki/Transcendental number

and go to section 4 of that article.

Theorem 1. e is transcendental

Proof. Suppose for contradiction that e is algebraic. This means that there is n and there are

integers aj for 0 ≤ j ≤ n such that

(1)
n∑

j=0

aje
j = 0,

with a0 6= 0 and an 6= 0. Now we multiply the equation (1) by I where I is an integral:

I =

∫ ∞
0

p(x)e−xdx

where p(x) is a carefully chosen polynomial with integer coefficients. This gives an equation

(2)
n∑

j=0

aje
j

∫ ∞
0

p(x)e−xdx = 0

This can be rewritten, by splitting up the integral in different ways, as

(3)
n∑

j=0

aje
j

∫ ∞
j

p(x)e−xdx = −
n∑

j=1

aje
j

∫ j

0

p(x)e−xdx

The idea is then to show that the right-hand side of (3) is much smaller than the left-hand side,

and so they cannot be equal, which is a contradiction.

The key to the whole argument is the fact that, for any natural number m,∫ ∞
0

xme−xdx = m!.

This can be proved by induction, starting from the base case m = 0.

The choice for p(x) is

p(x) = xk

n∏
j=1

(j − x)k+1

where k is yet to be chosen. Note that the lowest power of x in p(x) is xk. In fact

p(x) = (n!)k+1xk +
k+n+nk∑
i=k+1

bix
i

for some integers bi. It follows that∫ ∞
0

p(x)e−xdx = (n!)k+1k! + c0(k + 1)!

for some integer c0.
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Now we consider the other terms on the left-hand side of (3). If j is an integer with 1 ≤ j ≤ n

then

ej
∫ ∞
j

p(x)e−xdx =

∫ ∞
j

p(x)e−(x−j)dx =

∫ ∞
0

p(t + j)e−tdt

But

p(t + j) = (t + j)k
j−1∏
i=1

(i− j − t)k+1(−t)k+1

n∏
i=j+1

(i− j − t)k+1

which is a polynomial in which the lowest power of t is tk+1. So, for 1 ≤ j ≤ n∫ ∞
j

p(t + j)e−tdt = cj(k + 1)!

for an integer cj. So equation (3), when divided by k!, becomes

(4) a0(n!)k+1 + (k + 1)
n∑

j=0

ajcj = −
n∑

j=1

aje
j

k!

∫ j

0

p(x)e−xdx.

The left-hand side is an integer which can be made non-zero by choice of k. If we choose k + 1 to

be a prime which is bigger than both n and a0 then the left-hand side of (4) is an integer which is

not divisible by k + 1 and so cannot be 0. So then it suffices to show that the right-hand side of

(4) is less than 1 in modulus, if k is sufficiently large. To see this we note that if 0 ≤ x ≤ n then

|p(x)| ≤ nk × nn(k+1) = nn × (nn+1)k.

Hence, for 1 ≤ j ≤ n, ∣∣∣∣ 1

k!

∫ j

0

p(x)e−xdx

∣∣∣∣ ≤ nn+1 (nn+1)k

k!

This tends to 0 as k →∞. So the right-hand side of (4) is less than 1 in modulus if k is sufficiently

large. This gives the required contradiction. �


