$\begin{array}{c} {\rm MATH102~Solutions~September~2005} \\ {\rm Section~A} \end{array}$

1. The Taylor series of $f(x) = e^{2x}$ is

$$1 + 2x + \frac{4x^2}{2} + \frac{8x^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{2^n x^n}{n!}.$$

This can be written down using the Taylor series of e^y at 0 with y=2x, and can also be worked out directly by computing all derivatives of f at x=0. [3 marks]

a) When x = 1 the series is convergent and equal to f(1).

[1 mark]

b) When x = 100 the series is also convergent and equal to f(100). In fact the Taylor series is convergent and equal to $f(x) = e^{2x}$ for all x

No explanation is required in a) or b).

5 = 3 + 1 + 1 marks

2 Separating the variables, we have

$$\int y dy = -\int x dx,$$

$$\frac{1}{2}y^2 = -\frac{1}{2}x^2 + C,$$

or

$$y^2 + x^2 = 2C.$$

[2 marks]

The solution curves are circles centred on the origin of radius $\sqrt{2C}$, for any C > 0, as shown.

[3 marks]

For a solution with y(1) = 1 we have 1 + 1 = 2C, that is 2C = 2. So the solution satisfies $x^2 + y^2 = 2$. For y as a function of x, we have $y = \sqrt{2 - x^2}$, taking positive square root, since y(1) = 1 > 0.

$$[1 \text{ mark}]$$
$$[2+3+1=6 \text{ marks}]$$

3. Try
$$y = e^r x$$
. Then

$$r^2 - 4 = 0 \Rightarrow r = \pm 2.$$

So the general solution is

$$y = Ae^{2x} + Be^{-2x}.$$

[2 marks]

So $y' = 2Ae^{2x} - 2Be^{-2x}$ and the initial conditions y(0) = 1, y'(0) = -1 give

$$A+B=1, \ \ 2A-2B=-1 \to 4A=1, \ A=1-B \Rightarrow A=\frac{1}{4}, B=\frac{3}{4}.$$

So

$$y = \frac{1}{4}e^{2x} + \frac{3}{4}e^{-2x}.$$

[3 marks]

2 + 3 = 5 marks

4. We take limits along the lines y = 0 and x = 0. We have:

$$\lim_{y=0,x\to 0}\frac{x^2+y^2}{x^2+2y^2}=\lim_{x\to 0}\frac{x^2}{x^2}=1,$$

$$\lim_{x=0,y\to 0}\frac{x^2+y^2}{x^2+2y^2}=\lim_{x\to 0}\frac{y^2}{2y^2}=\frac{1}{2}.$$

So we get different limits along different lines of approach, and the overall limit does not exist.

[4 marks]

$$\frac{\partial f}{\partial x} = \frac{1}{x^2 + y^2} - \frac{2x^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2},$$
$$\frac{\partial f}{\partial y} = -\frac{2xy}{(x^2 + y^2)^2}.$$

[2 marks]

$$\begin{split} \frac{\partial^2 f}{\partial x^2} &= \frac{-2x}{(x^2 + y^2)^2} + \frac{4x(y^2 - x^2)}{(x^2 + y^2)^3} \\ &= \frac{2x^3 - 6xy^2}{(x^2 + y^2)^3}. \\ \frac{\partial^2 f}{\partial y^2} &= \frac{-2x}{(x^2 + y^2)^2} + \frac{8xy^2}{(x^2 + y^2)^3} \end{split}$$

$$=\frac{-2x^3+6xy^2}{(x^2+y^2)^3}.$$

So

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0,$$

as required.

[4 marks]

[2 + 4 = 6 marks.]

6. By the Chain Rule,

$$\frac{\partial f}{\partial x}(x,y) = \frac{\partial F}{\partial u}(u,v) + \frac{\partial F}{\partial v}(u,v),$$

$$\frac{\partial f}{\partial y}(x,y) = \frac{\partial F}{\partial u}(u,v) - \frac{\partial F}{\partial v}(u,v),$$

So

$$\begin{split} \frac{\partial^2 f}{\partial x^2} &= \frac{\partial^2 F}{\partial u^2}(u,v) + \frac{\partial^2 F}{\partial v \partial u}(u,v) + \frac{\partial^2 F}{\partial u \partial v}(u,v) + \frac{\partial^2 F}{\partial v^2}(u,v), \\ \frac{\partial^2 f}{\partial y^2} &= \frac{\partial^2 F}{\partial u^2}(u,v) - \frac{\partial^2 F}{\partial v \partial u}(u,v) - \frac{\partial^2 F}{\partial u \partial v}(u,v) + \frac{\partial^2 F}{\partial v^2}(u,v), \end{split}$$

and so

$$\frac{\partial^2 f}{\partial x^2}(x,y) + \frac{\partial^2 f}{\partial y^2}(x,y) = 2\left(\frac{\partial^2 F}{\partial u^2}(u,v) + \frac{\partial^2 F}{\partial v^2}(u,v)\right),$$

as required.
[6 marks]

7. For

$$f(x, y, z) = xy^2 + yz^2 - 2xyz,$$

we have

$$\nabla f(x, y, z) = (y^2 - 2yz)\mathbf{i} + (2xy + z^2 - 2xz)\mathbf{j} + (2yz - 2xy)\mathbf{k}$$

[2 marks] So

$$\nabla f(1,2,1) = 3\mathbf{j}.$$

The tangent plane at (1,2,1) is

$$3(y-2) = 3y - 6 = 0.$$

[3 marks]

[3 + 2 = 5 marks.]

8. For

$$f(x,y) = 2x^2 - 2x^2y + y^2,$$

we have

$$\frac{\partial f}{\partial x} = 4x - 4xy, \quad \frac{\partial f}{\partial y} = -2x^2 + 2y.$$

[2 marks]

So at a stationary point,

$$x(1-y) = 0 = 2x^2 + 2y \Rightarrow x = y - 0$$
 or $(y = 1 \text{ and } x^2 = 1) \Rightarrow (x, y) = (0, 0)$ or $(1, 1)$ or $(-1, 1)$.

[2 marks]

$$A = \frac{\partial^2 f}{\partial x^2} = 4 - 4y, \ B = \frac{\partial^2 f}{\partial u \partial x} = -4x, C = \frac{\partial^2 f}{\partial u^2} = 2.$$

For (x, y) = (0, 0) we have A = 4 > 0, B = 0, C = 2 and $AC - B^2 = 8 > 0$. So (0, 0) is a minimum.

For $(x,y)=(\pm 1,1)$ $A=0,\,B=\pm 4,\,C=2.$ So $AC-B^2=-16<0,$ and both these points are saddles.

[4 marks]

[2 + 2 + 4 = 8 marks]

9. For

$$f(x,y) = \frac{1}{x - y^2},$$

we have

$$\frac{\partial f}{\partial x} = \frac{-1}{(x-y^2)^2}, \quad \frac{\partial f}{\partial y} = \frac{2y}{(x-y^2)^2}.$$

So

$$f(2,1)=1, \quad \frac{\partial f}{\partial x}(2,1)=-1, \quad \frac{\partial f}{\partial y}(2,1)=2.$$

So the linear approximation is

$$1 - (x - 2) + 2(y - 1)$$
.

It would be acceptable to realise that

$$f(x,y) = (1 + (x - 2) - 2(y - 1) - (y - 1)^{2})^{-1}$$
$$= (1 + (x - 2) - 2(y - 1) - (y - 1)^{2})^{-1}$$

and to expand out.] [4 marks]

10.

$$\int \int_{R} x^{2} dy dx = \int_{-1}^{1} \int_{x^{2}-1}^{0} x^{2} dy dx$$
$$= \int_{-1}^{1} \left[x^{2} y \right]_{x^{2}-1}^{0} dx = \int_{-1}^{1} (x^{2} - x^{4}) dx$$

$$= \left[\frac{x^3}{3} - \frac{x^5}{5}\right]_{-1}^1 = 2\left(\frac{1}{3} - \frac{1}{5}\right) = \frac{4}{15}.$$

[6 marks]

Section B

11. (i) We have $f^{(2k)}(x)=(-1)^k\sin x$ and $f^{(2k+1)}(x)=(-1)^k\cos x$. So $f^{(2k)}(0)=0$ and $f^{(2k+1)}(0)=(-1)^k$. So:

a) $P_4(x) = x - \frac{1}{6}x^3$ and $R_4(x) = \frac{1}{5!}x^5 \cos c$ for some c between 0 and x. b) For any $k \ge 1$

$$P_{2k}(x) = \sum_{r=0}^{k-1} (-1)^r \frac{x^{2r+1}}{(2r+1)!}, \quad R_{2k}(x) = (-1)^k \frac{x^{2k+1}}{(2k+1)!} \cos c$$

for some c between 0 and x.

[6 marks]

Since $|\cos c| \le 1$ for all c, and $\cos c \ge 0$ for $c \in [0, \frac{\pi}{2}]$ we have

$$0 \le R_4(x) \le \frac{x^5}{(5)!} \cos c \le \frac{x^5}{120}.$$

So, since $\sin x = P_4(x) + R_4(x)$,

$$x - \frac{x^3}{6} \le \sin x \le x - \frac{x^3}{6} + \frac{x^5}{120}.$$

If in addition $0 \le x \le 1$ then $x^5 \le x^3$ and so

$$x - \frac{x^3}{6} \le \sin x \le x - \frac{19x^3}{120}$$
.

[3 marks]

(ii) Using the Taylor series of $\sin x$ at 0:

$$\lim_{x \to 0} \frac{x - \sin x}{x^3} = \lim_{x \to 0} \frac{x - \left(x - \frac{x^3}{6} + \frac{x^5}{120} \cdots\right)}{x^3} = \lim_{x \to 0} \frac{\frac{x^3}{6} - \frac{x^5}{120} \cdots}{x^3}$$
$$= \lim_{x \to 0} \frac{\frac{1}{6} - \frac{x^2}{120} \cdots}{1} = \frac{1}{6};$$

[3 marks]

b)

$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin x} \right) = \lim_{x \to 0} \frac{\sin x - x}{x \sin x}$$

$$= \lim_{x \to 0} \frac{-\frac{x^3}{6} + \dots}{x^2 - \frac{x^4}{6} \dots} = \lim_{x \to 0} \frac{-\frac{x}{6} \dots}{1 - \frac{x^2}{6} \dots} = 0.$$

[3 marks] [6+3+3+3=15 marks.]

12. For the complementary solution in both cases, if we try $y = e^{rx}$ we need

$$r^2 + 1 = 0,$$

that is, $r=\pm i$. So $e^{\pm ix}$ is a complementary solution and in general form the complementary solution can be written $A\cos x+B\sin x$. [3 marks]

(i). We try We try $y_p = Cx + D$. Then $y'_p(x) = C$ and $y''_p = 0$. So $y''_p + y_p = Cx + D = x$. So C = 1 and D = 0 So the general solution is

$$y = A\cos x + B\sin + x$$

[3 marks]

This gives

$$y'(x) = -A\sin x + B\cos x + 1$$

So y(0) = 1, y'(0) = -1 give

$$A = 1, B + 1 = -1,$$

so B = -2 and A = 1 and

$$y = \cos x - 2\sin x + x.$$

[3 marks]

(ii) We try $y_p=Ce^{-x}$. Then $y_p'=-Ce^{-x}$ and $y_p''=Ce^{-x}$. So $y_p''+y_p=2Ce^{-x}$. So C=1. So the general solution is

$$y = A\cos x + B\sin x + e^{-x}$$

[3 marks]

This gives

$$y' = A\sin x + B\cos x - e^{-x}.$$

So putting x = 0 the boundary conditions give

$$A + 1 = 1$$
, $B - 1 = -1$ \Rightarrow $A = B = 0$.

So the solution is

$$e^{-x}$$

[3 marks]

 $[5 \times 3 = 15 \text{ marks}]$

13. For

$$f(x,y) = x^2 + 3x^2y - y^2$$
, $g(x,y) = 2x^2 + y^2$,

$$\nabla f = (2x + 6xy)\mathbf{i} + (3x^2 - 2y)\mathbf{j}$$

$$\nabla g = 4x\mathbf{i} + 2y\mathbf{j}.$$

[2 marks]

At a stationary point of f, we have

$$2x(1+3y) = 3x^2 - 2y = 0.$$

So x=0 or $y=-\frac{1}{3}$. If x=0 then y=0. If $y=-\frac{1}{3}$ then $x^2=-\frac{2}{9}$, so there are no solutions. So the only stationary point in g<1 is (0,0). [4 marks]

At a maximum or minimum on the set where g=1, we must have $\nabla f=\lambda \nabla g.$ that is

$$2x + 6xy = 4\lambda x$$
, $3x^2 - 2y = 2\lambda y$.

[1 mark]

The first equation gives x=0 or $1+3y=2\lambda$. If x=0 then the equation g=1 gives $y^2=1$ and $y=\pm 1$.

If $2\lambda = 1 + 3y$, then plugging into the second equation gives

$$3x^2 - 2y = y(1+3y)$$

So multiplying by 2 and replacing $2x^2$ by $1-y^2$ gives

$$3 - 3y^2 - 4y = 2y + 6y^2.$$

So

$$9y^2 + 6y - 3 = 3(3y - 1)(y + 1) = 0.$$

So y = -1 or $y = \frac{1}{3}$ and using g = 1 gives

$$(x,y) = (0,-1) \text{ or } \left(\pm \frac{2}{3}, \frac{1}{3}\right).$$

So altogether the points on g=1 which can be maxima or minima of f on $g\leq 1$ are

$$(0,0)$$
 or $(0,-1)$ or $\left(\pm\frac{2}{3},\frac{1}{3}\right)$.

[6 marks]

We have

$$f(0,0) = 0, \ f(0,-1) = -1, \ f\left(\pm \frac{2}{3}, \frac{1}{3}\right) = \frac{7}{9}.$$

So the minimum value of f in $g \le 1$ is -1, realised at (0, -1), and the maximum is $\frac{7}{9}$, realised at $(\pm \frac{2}{3}, \frac{1}{3})$.

[2 marks.]

[2+4+1+6+2=15 marks.]

14. The line x + y = 1 meets the y-axis x = 0 at y = 1 and the x-axis y = 0 at x = 1. So the mass is given by

$$M = \int_0^1 \int_0^{1-y} y dx dy = \int_0^1 (y - y^2) dy$$

$$= \left[\frac{y^2}{2} - \frac{y^3}{3} \right]_0^1 = \frac{1}{6}.$$

[5 marks]

Then the centre of mass is $(\overline{x}, \overline{y})$ where

$$\overline{x} = \frac{1}{M} \int_0^1 y \int_0^{1-y} x dx dy = \frac{6}{2} \int_0^1 (y - 2y^2 + y^3) dy$$
$$= 3 \left[\frac{y^2}{2} - \frac{2y^3}{3} + \frac{y^4}{4} \right]_0^1 = 3 \left(\frac{1}{2} - \frac{2}{3} + \frac{1}{4} \right) = \frac{1}{4},$$

[5 marks]

$$\overline{y} = 6 \int_0^1 y^2 (1 - y) dx dy$$
$$6 \left[\frac{y^3}{3} - \frac{y^4}{4} \right]_0^1 = \frac{1}{2}.$$

So the centre of mass is

$$\left(\frac{1}{4},\frac{1}{2}\right)$$
.

$$[5 \text{ marks}]$$

$$[5+5+5=15 \text{ marks}]$$