MATH102 Solutions May 2004 Section A

1. The Taylor series of $f(x) = x^{-1} = (1 + (x - 1))^{-1}$ is

$$1 - (x - 1) + (x - 1)^{2} \cdots = \sum_{n=0}^{\infty} (-1)^{n} (x - 1)^{n}.$$

This can also be worked out by computing all derivatives of f at x = 1.

a) When x=2 the series is not convergent and so it does not make sense to say that it is equal to f(2).

[1 mark]

b) When x = 1.5 the series is convergent and equal to $f(1.5) = \frac{2}{3}$.

No explanation is required in a) or b).

5 = 3 + 1 + 1 marks

2. Solving both by the Integrating factor method, we write the equations as:

(i)
$$\frac{dy}{dx} - \frac{y}{x} = 0$$

(i) $\frac{dy}{dx} - \frac{y}{x} = 0$, (ii) $\frac{dy}{dx} - \frac{y}{x} = \frac{1}{x}$. Then the integrating factor is

$$\exp\left(\int \frac{-1}{x} dx\right) = \exp(-\ln x) = \exp(\ln(1/x)) = \frac{1}{x}$$

Then multiplying by the integral factor we have:

(i)

$$\frac{1}{x}\frac{dy}{dx} - \frac{1}{x^2}y = 0,$$
$$\frac{d}{dx}\left(\frac{1}{x}y\right) = 0,$$

$$\frac{y}{x} = C \Rightarrow y = Cx,$$

(ii)

$$\frac{1}{x}\frac{dy}{dx} - \frac{1}{x^2}y = \frac{1}{x^2},$$

$$\frac{d}{dx}\left(\frac{1}{x}y\right) = \frac{1}{x^2},$$

$$\frac{y}{x} = -\frac{1}{x} + C \Rightarrow y = Cx - 1.$$

3 marks for (i) 4 marks for (ii). Other methods are possible: separation of variables for (i) and complementary and particular solutions for linear o.d.e.'s with constant coefficients

[7 marks]

3. Try $y = e^r x$. Then

$$r^2 + 3r - 4 = 0 \Rightarrow (r - 1)(r + 4) = 0 \Rightarrow r = -4 \text{ or } r = 1.$$

So the general solution is

$$y = Ae^x + Be^{-4x}.$$

[2 marks]

So $y' = Ae^x - 4Be^{-4x}$ and the initial conditions y(0) = 1, y'(0) = 2 give

$$A + B = 1$$
, $A - 4B = 2 \rightarrow 5B = -1$, $A = 1 - B \Rightarrow B = \frac{-1}{5}$, $A = \frac{6}{5}$.

So

$$y = \frac{6}{5}e^x - \frac{1}{5}e^{-4x}.$$

[3 marks]

2+3=5 marks

4. We have

$$\lim_{x \to 0, y = 0} \frac{xy}{x^2 + y^2} = \lim_{x \to 0} \frac{0}{x^2} = 0,$$

[2 marks] and

$$\lim_{x \to 0, x = y} \frac{xy}{x^2 + y^2} = \lim_{x \to 0} \frac{x^2}{2x^2} = \frac{1}{2}$$

[2 marks]

2 + 2 = 4 marks

5.

$$\frac{\partial f}{\partial x} = \frac{2x}{x^2 + y^2}, \ \frac{\partial f}{\partial y} = \frac{2x}{x^2 + y^2},$$

[2 marks]

$$\begin{split} \frac{\partial^2 f}{\partial x^2} &= \frac{2}{x^2 + y^2} - \frac{4x^2}{(x^2 + y^2)^2} = \frac{2(y^2 - x^2)}{(x^2 + y^2)^2}, \\ & \frac{\partial^2 f}{\partial y \partial x} = -\frac{4yx}{(x^2 + y^2)^2}, \\ & \frac{\partial^2 f}{\partial x \partial y} = -\frac{4yx}{(x^2 + y^2)^2}, \\ & \frac{\partial^2 f}{\partial y^2} = \frac{2}{x^2 + y^2} - \frac{4y^2}{(x^2 + y^2)^2} = \frac{2(x^2 - y^2)}{(x^2 + y^2)^2}, \end{split}$$

which gives

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \frac{2(y^2 - x^2 + x^2 - y^2)}{(x^2 + y^2)^2} = 0.$$

$$[4 \text{ marks}]$$
$$[2+4=6 \text{ marks}]$$
$$6$$

$$\frac{\partial f}{\partial x} = 2x, \quad \frac{\partial f}{\partial y} = 3y^2,$$

$$\frac{\partial x}{\partial y} = 1, \quad \frac{\partial x}{\partial y} = 1, \quad \frac{\partial y}{\partial y} = 1, \quad \frac{\partial y}{\partial y} = -1,$$

$$\frac{\partial F}{\partial u} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} = 2x + 3y^2 = 2(u+v) + 3(u-v)^2 = 3u^2 + 3v^2 - 6uv + 2u + 2v,$$

$$\frac{\partial F}{\partial v} = \frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} = 2x - 3y^2 = 2(u+v) - 3(u-v)^2 = -3u^2 - 3v^2 + 6uv + 2u + 2v.$$

[5 marks]

7. Write

$$f(x, y, z) = 3x^2 - 2xyz + z^2y - 2.$$

Then

$$\nabla f(x, y, z) = (6x - 2yz)\mathbf{i} + (-2xz + z^2)\mathbf{j} + (-2xy + 2yz)\mathbf{k} = 4\mathbf{i} - \mathbf{j} \text{ at } (x, y, z) = (1, 1, 1).$$

[3 marks] So a normal to the surface at the point (1,1,1) is given by $4\mathbf{i} - \mathbf{j}$ and the tangent plane at this point is given by

$$4(x-1) - (y-1) = 4x - y - 3 = 0.$$

[2 marks]

[3 + 2 = 5 marks.]

8.

$$\frac{\partial f}{\partial x} = 6y + 2x, \quad \frac{\partial f}{\partial y} = 6y^2 + 6x.$$

[2 marks]

So at a stationary point,

$$6y+2x = 0 = 6y^2+6x \Rightarrow x = -3y, 6y^2-18y = 0 \Rightarrow (y = 0, x = 0) \text{ or } (y = 3, x = -9)$$

[2 marks]

$$A = \frac{\partial^2 f}{\partial x^2} = 2, \ B = \frac{\partial^2 f}{\partial y \partial x} = 6, C = \frac{\partial^2 f}{\partial y^2} = 12y.$$

For (x,y)=(0,0) we have C=0, and $AC-B^2=-36<0$. So (0,0) is a saddle point.

For (x, y) = (-9, 3) we have C = 36 and $AC - B^2 = 72 - 36 > 0$. Since also A > 0, (-9, 3) is a minimum.

[4 marks]

2 + 2 + 4 = 8 marks

9. We have

$$\frac{\partial f}{\partial x} = \frac{-2x}{(x^2 + y^2)^2}, \quad \frac{\partial f}{\partial y} = \frac{-2y}{(x^2 + y^2)^2}.$$

So

$$f(1,1) = \frac{1}{2}, \quad \frac{\partial f}{\partial x}(1,1) = -\frac{1}{2}, \quad \frac{\partial f}{\partial y}(1,1) = -\frac{1}{2}.$$

So the linear approximation is

$$\frac{1}{2} - \frac{1}{2}(x-1) - \frac{1}{2}(y-1).$$

[It would be acceptable to realise that

$$f(x,y) = (2 + 2(x - 1) + 2(y - 1) + (x - 1)^{2} + (y - 1)^{2})^{-1}$$
$$= \frac{1}{2}(1 + (x - 1) + (y - 1) + \frac{1}{2}(x - 1)^{2} + \frac{1}{2}(y - 1)^{2})^{-1}$$

and to expand out.]

[4 marks]

10.

$$\int \int_{T} (x - y) dx dy = \int_{0}^{1} \int_{y}^{1} (x - y) dx dy$$

$$= \int_{0}^{1} \left[\frac{x^{2}}{2} - yx \right]_{y}^{1} dy = \int_{0}^{1} \left(\frac{1}{2} - \frac{y^{2}}{2} - y + y^{2} \right) dy$$

$$= \int_{0}^{1} \left(\frac{1}{2} - y + \frac{y^{2}}{2} \right) dy = \left[\frac{y}{2} - \frac{y^{2}}{2} + \frac{y^{3}}{6} \right]_{0}^{1} = \frac{1}{6}.$$

[6 marks]

Section B

11. For $f(y) = (1+y)^{-1/2}$, we have

$$f'(y) = -\frac{1}{2}(1+y)^{-3/2}, \quad f''(y) = \frac{3}{4}(1+y)^{-5/2}, \quad f^{(3)}(y) = -\frac{15}{8}(1+y)^{-7/2}.$$

At y = 0 we have

$$f(0) = 1$$
, $f'(0) = -\frac{1}{2}$, $f''(0) = \frac{3}{4}$

So

$$P_2(y) = 1 - \frac{1}{2}y + \frac{3}{8}y^2$$

and

$$R_2(y) = -\frac{15}{8 \times 6} (1+c)^{-7/2} y^3$$

for some c between 0 and y.

[6 marks

If $y = x^2$ then $y \ge 0$ and if c is between 0 and y we have $(c \ge 0)$ and

$$0 < (1+c)^{-5/2} \le 1$$

So

$$|f(x^2) - P_2(x^2)| = |R_2(x^2)| \le \frac{5}{16}x^6.$$

[2 marks]

Now

$$\int_0^{1/2} P_2(x^2) dx = \int_0^{1/2} \left(1 - \frac{1}{2} x^2 + \frac{3}{8} x^4 \right) dx$$
$$= \left[x - \frac{x^3}{6} + \frac{3}{40} x^5 \right]_0^{1/2} = \frac{1}{2} - \frac{1}{48} + \frac{3}{1280} = 0.481510419...$$

[3 marks]

on my calculator

$$\ln(\frac{1}{2} + \frac{\sqrt{5}}{2}) = 0.481211825...$$

[1 mark]

Now

$$\frac{d}{dx}\ln(x+\sqrt{1+x^2}) = \frac{1+x(1+x^2)^{-1/2}}{x+\sqrt{1+x^2}} = (1+x^2)^{-1/2} \frac{\sqrt{1+x^2+x}}{x+\sqrt{1+x^2}}$$
$$= (1+x^2)^{-1/2}.$$

So

$$\int_0^{1/2} (1+x^2)^{-1/2} dx = \left[\ln(x+\sqrt{1+x^2}) \right]_0^{1/2} = \ln(\frac{1}{2} + \frac{\sqrt{5}}{2}) - \ln 1.$$

Since $R_2(x^2)$ is small for $|x| \leq \frac{1}{2}$ (in fact $\leq \frac{5}{16}x^6$) we expect the difference of the integrals of $(1+x^2)^{-1/2}$ and $P_2(x^2)$ between limits 0 and $\frac{1}{2}$ to be small (in fact,

$$\leq \int_0^{1/2} \frac{5x^6}{16} = \frac{5}{14336}.$$

[3 marks]

6+2+3+1+3=15 marks

12. For the complementary solution in both cases, if we try $y = e^{rx}$ we need

$$r^2 - 4 = 0$$
,

that is, $r=\pm 2$. So the complementary solution is $Ae^{2x}+Be^{-2x}$. [3 marks] (i) We try a particular solution $y_p=Cx+D$. Then $y_p'(x)=C$ and $y_p''=0$. So $y_p''-4y_p=-4Cx-4D$. Equating coefficients we get $C=-\frac{1}{4}$ and D=0. So the general solution is

$$y = Ae^{2x} + Be^{-2x} - \frac{1}{4}x.$$

[3 marks]

This gives

$$y' = 2Ae^{2x} - 2Be^{-2x} - \frac{1}{4}$$

So putting x = 0 the boundary conditions give

$$A+B=1, \ 2A-2B-rac{1}{4}=-1 \ \Rightarrow \ B=1-A, \ 4A=rac{5}{4}.$$

So

$$A = \frac{5}{16}, \quad B = \frac{11}{16}.$$

and the solution is

$$\frac{5}{16}e^{2x} + \frac{11}{16}e^{-2x} - \frac{1}{4}x.$$

[3 marks]

(ii) We try $y_p = C \sin x + D \cos x$. Then $y_p'' = -C \sin x - D \cos x$. So $y_p'' - 4y_p = -5C \sin x - 5D \cos x$. So D = 0 and $C = -\frac{1}{5}$. So the general solution is

$$y = Ae^{2x} + Be^{-2x} - \frac{1}{5}\sin x$$

[3 marks]

This gives

$$y' = 2Ae^{2x} - 2Be^{-2x} - \frac{1}{5}\cos x.$$

So putting x = 0 the boundary conditions give

$$A + B = 1$$
, $2A - 2B - \frac{1}{5} = -1$ \Rightarrow $B = 1 - A$, $4A = \frac{6}{5}$.

So

$$A = \frac{3}{10}, \quad B = \frac{7}{10}$$

and the solution is

$$\frac{3}{10}e^{2x} + \frac{7}{10}e^{-2x} - \frac{1}{5}\sin x.$$

[3 marks]

 $5 \times 3 = 15 \text{ marks}$

13. We want to minimise $f(x,y) = x^2 + y^2$ (the square of the distance of (x,y) from (0,0)) subject to a constraint in each case a), b). [1 mark]

$$\nabla f = 2x\mathbf{i} + 2y\mathbf{j}$$

$$\nabla g = 2x\mathbf{i} - 4y\mathbf{j}.$$

At a constrained minimum we must have

$$x = \lambda x$$
, $y = -2\lambda y$.

[3 marks]

So $\lambda = 1$ or x = 0,

If $\lambda = 1$ then y = 0 and the equation g(x, y) = 1 gives $x = \pm 1$. We have $f(\pm 1, 0) = 1$.

If x=0 then g(x,y)=1 gives $-2y^2=1$, which is impossible. So the minimum distance is 1.

[3 marks]

b)

$$\nabla h = 4y\mathbf{i} + (4x - 6y)\mathbf{j}.$$

At a constrained minimum we must have

$$x = 2\lambda y, \quad y = \lambda(2x - 3y).$$

[2 marks]

Multiplying the first equation by y and the second by x and subtracting we have

$$\lambda(2y^2 - 2x^2 + 3xy = (2y - x)(y + 2x)) = 0.$$

So x=2y or y=-2x, because $\lambda=0$ gives x=y=0 which is incompatible with h(x,y)=1.

[3 marks]

Substituting the first into h(x,y) = 1 we obtain

$$5y^2 = 1$$

So $y=\pm 1/\sqrt{5}$ and $x=\pm 2/\sqrt{5}$. Then f(x,y)=1. Substituting y=-2x gives $-8x^2-12x^2=1$, which has no solutions. So the minimum distance is 1. [3 marks]

1 + 3 + 3 + 2 + 3 + 3 = 15 marks.

14. The line x+2y=1 meets the y-axis x=0 at $y=\frac{1}{2}$ and the x-axis y=0 at x=1. So the area of the triangle is given by

$$A = \int_0^{1/2} \int_0^{1-2y} dx dy = \int_0^{1/2} (1-2y) dy$$
$$= \left[y - y^2 \right]_0^{1/2} = \frac{1}{4}.$$

[5 marks]

Then the centre of mass is $(\overline{x}, \overline{y})$ where

$$\overline{x} = \frac{1}{A} \int_0^{1/2} \int_0^{1-2y} x dx dy = 4 \int_0^{1/2} \left[\frac{x^2}{2} \right]_0^{1-2y} dy$$
$$= 4 \int_0^{1/2} \left(\frac{1}{2} - 2y + 2y^2 \right) dy = 4 \left[\frac{y}{2} - y^2 + \frac{2y3}{3} \right]_0^{1/2}$$

$$=4\left(\frac{1}{4}-\frac{1}{4}+\frac{1}{12}\right)=\frac{1}{3},$$

[5 marks]

$$\overline{y} = 4 \int_0^{1/2} \int_0^{1-2y} y dx dy = 4 \int_0^{1/2} y (1-2y) dy$$
$$4 \left[\frac{y^2}{2} - 2 \frac{y^3}{3} \right]_0^{1/2} = 4 \left(\frac{1}{8} - \frac{1}{12} \right) = \frac{1}{6}.$$

So the centre of mass is

$$\left(\frac{1}{3}, \frac{1}{6}\right)$$
.

$$\begin{bmatrix} 5 \text{ marks} \end{bmatrix} \\ \begin{bmatrix} 5+5+5=15 \text{ marks} \end{bmatrix}$$