SECTION A

1. Write down the Taylor series about x = 0 for the function

$$f(x) = e^{2x}.$$

State whether this Taylor series converges to f(x) for:

a)
$$x = 1$$
,

b)
$$x = 100$$
.

[5 marks]

2. Find the general solution of the following differential equation:

$$y\frac{dy}{dx} + x = 0,$$

and sketch some of the solution curves. Also, find the solution with y(1) = 1.

[6 marks]

3. Solve the differential equation

$$\frac{d^2y}{dx^2} - 4y = 0$$

with the initial conditions y(0) = 1, y'(0) = -1.

[5 marks]

4. Show that

$$\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{x^2+2y^2}$$

does not exist, by considering limits along two different lines of approach.

[4 marks]

5. Let

$$f(x,y) = \frac{x}{x^2 + y^2},$$

and work out

$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y^2}$.

Verify that

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0.$$

[6 marks]

6. Let f(x,y) = F(u,v) where u = x + y and v = x - y and suppose that all the first and second partial derivatives of f and F exist and are continuous. Work out

$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y^2}$

in terms of partial derivatives of F and verify that

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 2\left(\frac{\partial^2 F}{\partial u^2} + \frac{\partial^2 F}{\partial v^2}\right).$$

[6 marks]

7. Find the gradient vector $\nabla f(x, y, z)$ at (x, y, z), where

$$f(x, y, z) = xy^2 + yz^2 - 2xyz.$$

Also find the tangent plane at (1, 2, 1) to the surface f(x, y, z) = 2. [5 marks]

8. Locate and classify all stationary points of the function

$$f(x,y) = 2x^2 - 2x^2y + y^2.$$

[8 marks]

9. Find the linear approximation near (x, y) = (2, 1) to the function

$$f(x,y) = \frac{1}{x - y^2}.$$

[4 marks]

10. Let R be the region in the plane bounded by the x-axis and the parabola $y=x^2-1$. Work out the double integral

$$\int \int_{R} x^2 dx dy.$$

You may change the order of integration if you prefer.

[6 marks]

SECTION B

11.

(i) Find an expression for the Taylor polynomial $P_n(x)$ at 0 for the function $f(x) = \sin x$, and for the remainder term $R_n(x)$ in the cases

a)
$$n = 4$$
,

b)
$$n = 2k$$
, any $k \ge 0$.

Hence, or otherwise, show that if $0 \le x \le 1$, then

$$0 \le R_4(x) \le \frac{x^5}{120},$$

and

$$x - \frac{1}{6}x^3 \le \sin x \le x - \frac{19}{120}x^3.$$

(ii) By using the Taylor series of $\cos x$ at 0 or otherwise, work out the limits

a)
$$\lim_{x\to 0} \frac{x-\sin x}{r^3}$$
,

b)
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin x} \right)$$
.

In the second one you may wish to rewrite the expression with a common denominator [15 marks]

12. Solve the following differential equations with the given boundary conditions:

(i)

$$y'' + y = x$$

with y(0) = 1, y'(0) = -1.

(ii)

$$y'' + y = 2e^{-x}$$

with y(0) = 1, y'(0) = -1,

[15 marks]

13. Find the maximum and minimum values of the function f(x, y) in the region where $g(x, y) \leq 1$, where f(x, y) and g(x, y) are defined by

$$f(x,y) = x^{2} + 3x^{2}y - y^{2},$$
$$g(x,y) = 2x^{2} + y^{2}.$$

[15 marks]

14. Find the centre of mass of the plane triangle bounded by the lines

$$x = 0, \quad y = 0, \quad x + y = 1,$$

where mass is distributed with density function $\rho(x,y)$ and

$$\rho(x,y) = y.$$

[15 marks]