
MATH104 Solution Sheet 5

1.

a) Let m, n ∈ Z. If m is even then mn is even.

Given Goal

m, n ∈ Z mn is even
m is even

Recall that an integer m is even if it is divisible by 2, that is if m = 2k for some integer k. So
we have

Given Goal

m, n ∈ Z mn = 2ℓ for some ℓ ∈ Z

m = 2k for some k ∈ Z

Now we can see how to proceed. Given that m = 2k we have mn = 2kn = 2ℓ, where ℓ = kn.

Proof. Let m, n ∈ Z and suppose that m is even: thus there is an integer k with m = 2k. So
mn = (2k)n = 2(kn) is divisible by 2, i.e. mn is even as required.

b) Let a, b, c ∈ Z. If a | b and b | c then a | c.

Given Goal

a, b, c ∈ Z a | c
a | b
b | c

Using the definition of ‘divides’, we can rewrite this as

Given Goal

a, b, c ∈ Z c = ma for some m ∈ Z

b = ka for some k ∈ Z

c = ℓb for some ℓ ∈ Z

This shows us how to proceed. Given that c = ℓb and b = ka we have c = ℓ(ka) = (ℓk)a, so c

is divisible by a.

Proof. Let a, b, c ∈ Z and suppose that a | b and b | c. Thus there are integers k and ℓ such that
b = ka and c = ℓb. It follows that c = ℓ(ka) = (ℓk)a, so that a | c as required.



c) Let x ∈ R. If 5x ≤ x2 then x ≤ 0 or x ≥ 5.

Given Goal

x ∈ R x ≤ 0 or x ≥ 5
5x ≤ x2

Following the strategy given in lectures, we negate x ≤ 0 and move it into the Given column:

Given Goal

x ∈ R x ≥ 5
5x ≤ x2

x > 0

The strategy is now clear: Given than 5x ≤ x2 and x > 0, we can divide both sides of 5x ≤ x2

by x to give 5 ≤ x.

Proof. Let x ∈ R with 5x ≤ x2. If x ≤ 0 the goal is achieved. So suppose x > 0. Then we
can divide both sides of the inequality by x to give 5 ≤ x. Hence either x ≤ 0 or x ≥ 5 as
required.

d) Let a and b be positive real numbers. If a 6= b then (a + 2b)3 > 27ab2. The contrapositive is
easier to work with:

Given Goal

a, b ∈ R a = b

a, b ≥ 0
(a + 2b)3 ≤ 27ab2

Proof.

(a + 2b)3 ≤ 27ab2 ⇒ a3 + 6a2b + 12ab2 + 8b3 ≤ 27ab2

⇒ a3 + 6a2b − 15ab2 + 8b3 ≤ 0

⇒ (a − b)2(a + 8b) ≤ 0.

Now we are given a ≥ 0 b ≥ 0, And if a 6= b then a+8b > 0. It follows that either a = b (as we
are trying to prove) or (a − b)2 ≤ 0. Since (a − b)2 < 0 is not possible (a, b are real) we must
have (a − b)2 = 0, which is the same as a − b = 0, that is a = b as required.

e) There do not exist integers m and n with 13m − 39n = 71.

Given Goal

m, n ∈ Z 13m − 39n 6= 71



For a proof by contradiction, we move the negation of the goal in with the givens:

Given Goal

m, n ∈ Z Contradiction
13m − 39n = 71

The contradiction will come from the fact that 13m − 39n is divisible by 13, but 71 is not.

Proof. Assume for a contradiction that m and n are integers with 13m − 39n = 71. Now
13m − 39n = 13(m − 3n) is divisible by 13. Thus 71 is divisible by 13. This is the required
contradiction.

f) Let n ∈ Z. If n2 is odd then n is odd.
The contrapositive is: If n is not odd then n2 is not odd, that is:
If n is even then n2 is even.

Given Goal

n ∈ Z n2 is even
n is even

Proof. Let n be even, n = 2k say. Then n2 = (2k)2 = 4k2 = 2(2k2) which is even.

g) Let n ∈ Z. If n is even then 3n + 1 is odd.

Given Goal

n ∈ Z 3n + 1 is odd
n is even

For a proof by contradiction we move the negation of the goal in with the givens:

Given Goal

n ∈ Z Contradiction
n is even
3n + 1 is even

Using the definition of ‘even’, this becomes:

Given Goal

n ∈ Z Contradiction
n = 2k for some integer k

3n + 1 = 2ℓ for some integer ℓ



Proof. Let n ∈ Z be even, so n = 2k for some k ∈ Z. Assume for a contradiction that 3n + 1
is also even, so 3n + 1 = 2ℓ for some ℓ ∈ Z. Then 1 = (3n + 1) − 3n = 2ℓ − 6k = 2(ℓ − 3k),
which is impossible since 2 does not divide 1 (or you can say ‘1 is odd’). This is the required
contradiction.

2. Euler’s argument generalizes to the following:

Theorem 1 If a network has more than two vertices from which an odd number of edges emanate,

then no tour is possible.

Proof. Suppose for a contradiction that such a tour is possible. Pick a vertex with an odd number
of edges which is neither the start nor the end of the tour. Then the tour leaves this vertex as
many times as it enters it: since it enters and leaves along different edges, there must be an even
number of edges at the vertex. This is the required contradiction.

In order to show that a tour is possible, we just have to describe how we’d do it. To make this
easier, some networks are shown below with numbered edges.
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a) A tour is possible. Starting at the bottom left vertex, follow the edges in numbered order.
(Notice that there are two vertices with an odd number of edges: any tour must start at one
of these and end at the other.)

b) No tour is possible. Four of the six vertices have an odd number of edges emanating from
them.

c) A tour is possible. Starting at the bottom left vertex, follow the edges in numbered order.

d) No tour is possible. The eight vertices all have an odd number (3) of edges emanating from
them.

If a tour is required to begin and end at the same vertex, then we have to enter and leave
every vertex the same number of times. Hence a tour can only be possible if every vertex has an
even number of edges emanating from it. Thus no tour is possible for a), b), or d). However, a
tour is possible for c): the one described above starts and ends at the same vertex (the bottom
left vertex).

3
∗
. Let f(n) = n3 − 2n2 + 5n + 19. Then f(19) = 193 − 2× 192 + 5× 19 +19 is certainly divisible

by 19 and is bigger than 19, and so cannot be prime.



Let f(n) = 5n4 − 2n2 + 4n. Then f(2) = 5× 24 − 2× 22 + 4× 2 is divisible by 2 and is bigger
than 2, so cannot be prime. We could equally well have used any other value of n > 1.

These examples suggest a proof that integer polynomials can’t always take prime values. Let
f(n) = a

r
nr + a

r−1n
r−1 + · · ·+ a1n + a0 be an integer polynomial. If the constant term a0 is zero,

then
f(2) = a

r
2r + a

r−12
r−1 + · · ·+ 2a1

is divisible by 2. If a0 is non-zero, then

f(a0) = a
r
ar

0
+ a

r−1a
r−1

0
+ · · · + a1a0 + a0

is divisible by a0. However, there are some other issues to consider:

a) Consider first the case where a0 6= 0. It’s certainly true that a0 | f(a0), but this doesn’t
necessarily mean that f(a0) is not prime – it’s possible that a0 is prime, and f(a0) = a0. (On
the other hand, if f(a0) = 0 or f(a0) < 0, then f(a0) is not prime by our definition.) To get
around this problem, notice that for every integer k ≥ 1

f(ka0) = a
r
krar

0
+ a

r−1k
r−1ar−1

0
+ · · · + a1ka0 + a0

is also divisible by a0. If there’s a value of k for which f(ka0) 6= a0, then f(ka0) is not prime.
However, there must be such a value, since f(n) is a polynomial of degree r, and hence we can
only have f(n) = a0 for at most r values of n. Well, that’s true provided f(n) isn’t a constant

polynomial. If f(n) = a0 is constant, and a0 is prime, then f(n) is prime for all values of
n, and no amount of clever argument will change this. We’ll thus have to exclude constant
polynomials from our theorem.

A similar point applies when a0 = 0. In this case, f(2) is divisible by 2, but it may be equal
to 2: however, f(2k) is also divisible by 2, and can only be equal to 2 for at most r different
values of k. So there’s some value of k for which f(2k) is not prime.

b) A more serious problem arises when a0 = ±1. In this case, while it’s true that f(ka0) is
divisible by a0 for all integers k, this doesn’t tell us that some f(ka0) is not prime, since being
divisible by ±1 doesn’t mean that a number isn’t prime. We’ll also exclude this case from our
theorem.

We therefore arrive at:

Theorem 1 Let f(n) be a non-constant integer polynomial with constant term a0. If a0 6= 1 and

a0 6= −1, then there is an integer n ≥ 1 such that f(n) is not prime.

Proof. Let
f(n) = a

r
nr + a

r−1n
r−1 + · · ·+ a1n + a0

be a non-constant integer polynomial, and suppose that a0 6= ±1.
If a0 = 0 then for each integer k ≥ 1 we have

f(2k) = a
r
2rkr + a

r−12
r−1kr−1 + · · ·+ 2a1k,

which is clearly divisible by 2. However, f(2k) can only be equal to 2 for at most r different values
of k (since f(n) is non-constant), and hence there is some k for which f(2k) 6= 2, and is therefore
not prime as required.



If a0 6= 0 then let M = |a0|. Since a0 6= ±1 we have M ≥ 2. Then for each integer k ≥ 1 we
have

f(Mk) = a
r
M rkr + a

r−1M
r−1kr−1 + · · ·+ a1Mk ± M,

which is clearly divisible by M . However, f(Mk) can only be equal to M for at most r different
valuse of k, and hence there is some k for which f(Mk) 6= M , and is therefore not prime as
required.

In fact, the theorem is also true if a0 = ±1, but this is harder to prove. Here’s an indication
(for interest only. . . ) of how it could be done. We start with the example f(n) = n2 + n +1. The
trick is to work out the polynomial with n + 1 in place of n:

F (n) = f(n + 1) = (n + 1)2 + (n + 1) + 1 = n2 + 3n + 3.

This has constant term 3, so we know from our earlier work that it’s not prime for some value
n = 3k, where k ≥ 1 is an integer. In this particular example, F (3) = 21 is not prime. However,
F (3) = f(4), so f(4) is not prime.

In the general case, we notice that for each integer i ≥ 1, F (n) = f(n + i) has constant term
f(i). (If you’re not sure why this is true, try it on a few examples.) So provided we can find some
i for which f(i) 6= ±1, then by our theorem the corresponding F (n) = f(n + i) is not prime for
some choice N of n, and hence f(N + i) is not prime. However f(i) can only be +1 for at most r

values of i, and it can only be −1 for at most r values of i. So integers i ≥ 1 with f(i) 6= ±1 do
exist.


