Solutions to MATH102 May 2003

1. $f'(x) = -\sin x$ and $f''(x) = -\cos x$. So f(0) = 1, f'(0) = 0 and f''(0) = -1. So the Taylor polynomial $P_2(x,0)$ is

$$1 - \frac{1}{2}x^2.$$

[4 marks]

2. In standard form

$$\frac{dy}{dx} + \frac{2}{x}y = 8x.$$

So the integrating factor is

$$\exp\left(\int \frac{2}{x} dx\right) = \exp(\log x^2) = x^2.$$

[2 marks]

So the equation becomes

$$x^2 \frac{dy}{dx} + 2xy = 8x^3$$

or

$$\frac{d}{dx}(x^2y) = 8x^3$$

Integrating gives

$$x^2y = 2x^4 + C$$

So

$$y = 2x^2 + Cx^{-2}.$$

[2 marks]

3. Try $y = e^{rx}$. We have

$$r^{2} + 6r + 5 = (r+1)(r+3) = 0 \Leftrightarrow r = -1 \text{ or } r = -5.$$

[2 marks]

So

$$y = Ae^{-x} + Be^{-5x}, y' = -Ae^{-x} - 5Be^{-5x}.$$

So

$$A + B = 4$$
, $-A - 5B = 0$.

So B = -1 and A = 5. So

$$y = 5e^{-x} - e^{-5x}.$$

[4 marks]

4.

$$\lim_{(x,y)\to 0, y=0} \frac{x^2-y^2}{x^2+4y^2} = \lim_{x\to 0} \frac{x^2}{x^2} = 1,$$

$$\lim_{(x,y)\to 0, x=0}\frac{x^2-y^2}{x^2+4y^2}=\lim_{y\to 0}\frac{-y^2}{4y^2}=-\frac{1}{4}.$$

So the limits along different lines through (0,0) are different, and the overall limit as $(x,y) \rightarrow (0,0)$ does not exist.

[4 marks]

5.

$$\begin{split} \frac{\partial z}{\partial u} &= 2u, & \frac{\partial z}{\partial v} &= -2v, \\ \frac{\partial u}{\partial x} &= y, & \frac{\partial u}{\partial y} &= x, & \frac{\partial v}{\partial x} &= \frac{1}{y}, & \frac{\partial v}{\partial y} &= \frac{-x}{y^2}. \end{split}$$

[2 marks]

So

$$\begin{split} \frac{\partial z}{\partial x} &= \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x} = 2uy - 2\frac{v}{y} = 2xy^2 - 2\frac{x}{y^2}, \\ \frac{\partial z}{\partial y} &= \frac{\partial z}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial y} = 2ux + 2\frac{vx}{y^2} = 2x^2y + 2\frac{x^2}{y^3}. \end{split}$$

[2 marks]

6.

$$\nabla f = z\mathbf{i} - 2y\mathbf{j} + (x + 3z^2)\mathbf{k}.$$

So

$$\nabla f(1, -1, 1) = \mathbf{i} + 2\mathbf{j} + 4\mathbf{k}.$$

[2 marks]

So the derivative at P in the direction (1, 2, 2) is

$$\frac{1}{\|\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}\|}(\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) \cdot \nabla f(1, -1, 1) = \frac{1}{\sqrt{1 + 4 + 4}}((\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) \cdot (\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}) = \frac{13}{3}.$$

[2 marks]

The equation of the tangent plane is

$$\nabla f(1, -1, 1).((x - 1)\mathbf{i} + (y + 1)\mathbf{j} + (z - 1)\mathbf{k}) = 0,$$

that is,

$$(\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}).((x-1)\mathbf{i} + (y+1)\mathbf{j} + (z-1)\mathbf{k})$$

= $(x-1) + 2(y+1) + 4(z-1) = x + 2y + 4z - 3 = 0$.

[2 marks]

7.

$$\frac{\partial f}{\partial x} = -16x, \quad \frac{\partial f}{\partial y} = 12y + y^2 - y^3.$$

So at critial points we have

$$-16x = 0 = -y(y^2 - y - 12) = y(y+3)(y-4).$$

So the critical points are (0,0), (0,-3) and (0,4).

[3 marks]

We have

$$A = \frac{\partial^2 f}{\partial x^2} = -16, \quad B = \frac{\partial^2 f}{\partial y \partial x} = 0, \quad C = \frac{\partial^2 f}{\partial y^2} = 12 + 2y - 3y^2.$$

[2 marks]

So at (0,0) we have $AC - B^2 = -16 \times 12 < 0$, so (0,0) is a saddle.

At (0, -3) we have $AC - B^2 = -16 \times -21 > 0$ and A < 0, so (0, -3) is a local maximum.

At (0,4) we have $AC - B^2 = -16 \times -28 > 0$ and A < 0, so (0,4) is also a local maximum.

[3 marks]

8.

$$f(x,y) = \frac{1}{1 + (x-1) - y} = (1 + (x-1-y))^{-1} \approx 1 - (x-1-y) + ((x-1)-y)^{2}$$
$$= 1 - (x-1) + y + (x-1)^{2} - 2(x-1)y + y^{2},$$

because

$$(1+t)^{-1} \approx 1 - t + t^2$$

if t is near 0.

Alternatively we can use Taylor's formula for two variables. We have $f(x,y)=(x-y)^{-1}$. So

$$\frac{\partial f}{\partial x} = -(x - y)^{-2}, \quad \frac{\partial f}{\partial y} = (x - y)^{-2},$$
$$\frac{\partial^2 f}{\partial x^2} = 2(x - y)^{-3}, \quad \frac{\partial^2 f}{\partial x \partial y} = -2(x - y)^{-3}, \quad \frac{\partial^2 f}{\partial y^2} = 2(x - y)^{-3}.$$

So at (x, y) = (1, 0) we get f(1, 0) = 1,

$$\frac{\partial f}{\partial x}(1,0) = -1, \quad \frac{\partial f}{\partial y}(1,0) = 1,$$

$$\frac{\partial^2 f}{\partial x^2}(1,0)=2, \quad \frac{\partial^2 f}{\partial x \partial y}(1,0)=-2, \quad \frac{\partial^2 f}{\partial y^2}(1,0)=2.$$

So the quadratic approximation is

$$f(x,y) \approx 1 - (x-1) + y + \frac{1}{2}((2(x-1)^2 - 4(x-1)y + 2y^2),$$

which is the same as before.

[5 marks]

9. The region R is as shown.

Then

$$\int \int_{B} (x+2y)dxdy = \int_{0}^{2} \int_{0}^{1-y/2} (x+2y)dxdy$$

$$= \int_0^2 \left[\frac{x^2}{2} + 2xy \right]_{x=0}^{x=1-y/2} dy = \int_0^2 \left(\frac{(1-y/2)^2}{2} + 2y - y^2 \right) dy$$
$$= \int_0^2 \left(\frac{1}{2} + \frac{3y}{2} - \frac{7}{8}y^2 \right) dy = \left[\frac{1}{2}y + \frac{3y^2}{4} - \frac{7}{24}y^3 \right]_0^2$$
$$1 + 3 - \frac{7}{3} = \frac{5}{3}.$$

[6 marks]

10. The integration is over the region S as shown.

[3 marks]

So in $S,\,0\leq x\leq 1$ and for each fixed $0\leq x\leq 1,\,(x,y)\in S\Leftrightarrow 0\leq y\leq 2x.$ So

$$I = \int_0^2 \left(\int_{y/2}^1 y e^{x^3} dx \right) dy = \int \int_S y e^{x^3} dx dy$$

$$= \int_0^1 \left(\int_0^{2x} y e^{x^3} dy \right) dx = \int_0^1 \left(\left[e^{x^3} \frac{y^2}{2} \right]_{y=0}^{y=2x} \right) dx$$

$$= \int_0^1 2x^2 e^{x^3} dx = \left[\frac{2}{3} e^{x^3} \right]_0^1 = \frac{2(e-1)}{3}.$$

[5 marks]

Solutions to Section B

11a). This is a y = vx equation because it can be written in the form $F(y/x)\frac{dy}{dx} = G(y/x)$. Putting y = xv, we have

$$\frac{dy}{dx} = x\frac{dv}{dx} + v$$

and

$$(x^2 + x^2v)\left(v + x\frac{dv}{dx}\right) = x^2v - x^2v^2.$$

So dividing through by x^2 , we have

$$(1+v)v + (1+v)x\frac{dv}{dx} = v - v^2 = v - v^2.$$

[3 marks]

So

$$(1+v)x\frac{dv}{dx} = v - v^2 - v - v^2 = -2v^2.$$

Separating variables gives

$$\int \frac{1+v}{v^2} dv = \int \frac{-2}{x} dx,$$

or

$$-v^{-1} + \ln v = -2\ln x + C.$$

or

$$\ln v + 2 \ln x = \ln(vx^2) = \ln(xy) = v^{-1} = x/y + C.$$

So

$$\ln(xy) = x/y + C.$$

[4 marks]

Putting x = y = 1 gives 0 = 1 + C, and C = -1.

[1 marks]

b) This is a linear second order o.d.e. with constant coefficients. For a complementary soution, we try $y = e^{rx}$. Then we have

$$r^2 + 2r + 5 = 0 \Leftrightarrow r = -1 \pm 2i.$$

So a complementary solution is

$$Ae^{-x}\cos 2x + Be^{-x}\sin 2x.$$

[3 marks]

For a particular solution, since we have 10x on the righthand side, we try y = Cx + D. Then y' = C and y'' = 0. So

$$y'' + 2y' + 5y = 2C + 5Cx + 5D = 10x.$$

Equating coefficients, we have 2C+5D=0 and 5C=10. So C=2 and $D=-\frac{4}{5}$. So the general solution is

$$y = -\frac{4}{5} + 2x + Ae^{-x}\cos 2x + Be^{-x}\sin 2x.$$

[4 marks]

12. We have $f(x,y,z)=x^2y^2z^2$ and write $g(x,y,z)=x^2+4y^2+9z^2$. To find the maximum and minimum values of f subject to g=27 we need to first find all solutions of $\nabla f=\lambda\nabla g$ subject to g=27. Now

$$\nabla f(x,y,z) = 2xy^2z^2\mathbf{i} + 2yx^2z^2\mathbf{j} + 2zx^2y^2\mathbf{k},$$

$$\nabla \mathbf{g}(x, y, z) = 2x\mathbf{i} + 8y\mathbf{j} + 18z\mathbf{k}.$$

[5 marks]

So we have to solve

$$xy^2z^2 = \lambda x$$
, $yx^2z^2 = 4\lambda y$, $zx^2y^2 = 9\lambda z$.

So

$$x = 0 \text{ or } y^2 z^2 = \lambda,$$

$$y = 0 \text{ or } x^2 z^2 = 4\lambda,$$

$$z = 0 \text{ or } x^2 y^2 = 9\lambda.$$

[3 marks]

If one of x, y or z=0 then f=0, which is clearly a minimum of f since $x^2y^2z^2\geq 0$. So now suppose that all of x, y, $z\neq 0$. Then eliminating λ from the remaining equations, we have

$$4y^2z^2 - x^2z^2 = 0 = x^2y^2 - 9y^2z^2.$$

Since $z \neq 0$ and $y \neq 0$ we have

$$x^2 = 4u^2 = 9z^2.$$

Then g = 27 gives

$$27z^2 = 27.$$

So $z^2 = 1$, $y^2 = 9/4$, $x^2 = 9$ and f(x, y, z) = 81/4, which must be the maximum of f subject to g = 27.

[7 marks]

13. We have

$$f(x,y) = (4 - x^2 - y^2)^{1/2}$$

So

$$\frac{\partial f}{\partial x} = -x(4-x^2-y^2)^{-1/2}, \quad \frac{\partial f}{\partial y} = -y(4-x^2-y^2)^{-1/2}.$$

[3 marks]

So

$$\begin{split} \frac{\partial^2 f}{\partial x^2} &= -(4-x^2-y^2)^{-1/2} - x^2(4-x^2-y^2)^{-3/2}, \\ &\frac{\partial^2 f}{\partial x \partial y} = -xy(4-x^2-y^2)^{-3/2}, \\ &\frac{\partial^2 f}{\partial y^2} = -(4-x^2-y^2)^{-1/2} - y^2(4-x^2-y^2)^{-3/2}. \end{split}$$

[4 marks]

So at (0,0) all the terms are 0 except that

$$f(0,0) = 2,$$

$$\frac{\partial^2 f}{\partial x^2}(0,0) = -4^{-1/2} = -\frac{1}{2} = \frac{\partial^2 f}{\partial y^2}(0,0).$$

So the second order approximation to f(x, y) is

$$2 - \frac{1}{4}(x^2 + y^2).$$

[4 marks]

The binomial expansion of $(1-z)^{1/2}$ starts

$$1-\frac{1}{2}z\cdots$$

So

$$(4 - x^2 - y^2)^{1/2} = 4^{1/2} \left(1 - \frac{x^2 + y^2}{4} \right)^{1/2} = 2 \left(1 - \frac{x^2 + y^2}{8} \cdots \right)$$
$$= 2 - \frac{1}{4} (x^2 + y^2) \cdots$$

as required.

[4 marks]

14. The integration is over the region T as shown.

[3 marks]

Since the density is x + y the mass M satisfies

$$M = \int_0^1 \int_0^x (x+y)dydx = \int_0^1 \left[xy + \frac{y^2}{2} \right]_{y=0}^{y=x} dx$$
$$= \int_0^1 \frac{3x^2}{2} dx = \left[\frac{x^3}{2} \right]_0^1 = \frac{1}{2}$$

as required.

[4 marks]

Then the centre of mass $(\overline{x}, \overline{y})$ satisfies

$$\overline{x} = M^{-1} \int_0^1 \int_0^x x(x+y) dy dx = 2 \int_0^1 \left[x^2 y + x \frac{y^2}{2} \right]_{y=0}^{y=x} dx$$

$$= 2 \int_0^1 \frac{3x^3}{2} dx = 2 \left[\frac{3x^4}{8} \right]_0^1 = \frac{3}{4},$$

$$\overline{y} = M^{-1} \int_0^1 \int_0^x y(x+y) dy dx = 2 \int_0^1 \left[x \frac{y^2}{2} + x \frac{y^3}{3} \right]_{y=0}^{y=x} dx$$

$$= 2 \int_0^1 \frac{5x^3}{6} dx = 2 \left[\frac{5x^4}{24} \right]_0^1 = \frac{5}{12}.$$

$$(\overline{x}, \overline{y}) = \left(\frac{3}{4}, \frac{5}{12} \right).$$

So

[8 marks]