This is supposed to take ten minutes or less.
What is the Taylor series of f(z) = Inx at 1?

Hint:

We need to calculate all the derivatives of f.

First, at a general point z,

and then at x = 1.
So...

@) =2,
(@) = -2,

. O (x) = 2273,
O (2) = =374,

. and the general formula

is

F @) = (~1)" (= Dl

So putting x = 1 gives:

L f(1)=m(1) =0,
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f(4)(1) = —} and in general
TR genera,
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So the Taylor series of Inx at z = 1,
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So the fourth Taylor polynomial Py(x) of Inx at 1 is
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The associated remainder term Ry4(x) is
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for some ¢ between 1 and x.
Now take x = 2.

f(2)=1n2

According to the university calculator, this is
0.6931..

The fourth Taylor polynomial gives the approximation

Pi(2) = 1—%+%—%= % = 0.58333333 - .
For ¢ between 1 and 2, ¢~ is largest at ¢ = 1. So an upper bound on |R5(2) is given
by
IRs(2)| < 2.
5
So we obtain
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which is consistent with the calculator’s calculation.



