An Experiment

28 January 2008



This is supposed to take ten minutes or less.
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The associated remainder term Ry(x) is
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for some ¢ between 1 and x.
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f(2)=1In2

According to the university calculator, this is
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The fourth Taylor polynomial gives the approximation

11 1 7
Pa@)=1-3+3-277

— — = = =0.58333333- - -
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which is consistent with the calculator’s calculation.



