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Branched coverings

I The sphere and the torus are the only compact surfaces to
admit self-branched coverings of degree greater than one.

I Branched coverings of the sphere which are not
homeomorphisms necessarily have branch points, also called
critical values.

I Rational maps are examples of branched coverings.
I The dynamics of rational maps is one of the main areas of

complex dynamics.
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Critically finite branched coverings

A branched covering f is said to be critically finite if the postcritical
set

X (f ) = {f n(c) : c critical , n > 0}

is finite.

Two critically finite branched coverings f0 and f1 are usually said to
be Thurston equivalent if there is a homotopy ft (t ∈ [0, 1])
through critically finite branched coverings such that X (ft) varies
isotopically for t ∈ [0, 1].

In this talk a slightly stronger notion of Thurston equivalence will
be used. We consider branched coverings of the Riemann sphere for
which the critical values are numbered, and then f0 and f1 are said
to be Thurston equivalent if the isotopy of X (ft) preserves the
numbering of critical values.
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Thurston’s Theorem for critically finite branched coverings
(1982)

The quotient by Möbius conjugation of a Thurston equivalence
class is contractible to the Möbius conjugacy class of a unique
rational map, if and only if a certain orbifold is hyperbolic, and a
certain combinatorial condition holds, which can be described as
the non-existence of a Thurston obstruction.
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Thurston’s theorem has been deliberately formulated as a result
about the topology of a space of maps. It is a geometrisation result
in two ways.

It gives a condition under which a map is holomorphic, modulo the
appropriate type of homotopy equivalence (Thurston equivalence).

It also shows that the corresponding space of maps is contractible
to a space with a geometric structure – although there is little to
say about geometries on a space consisting of a single point. But a
point is just the simplest case. . .
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A generalisation

The elements of a connected topological space B = B(f0,Y (f0))
are [f ,Y (f )], and include [f0,Y (f0)], where:

I f is a branched covering of the Riemann sphere;
I Y (f ) is a finite set which contains all the critical values, which

are numbered, and is the union of the set of critical values and
Z (f ), where f (Z (f )) ⊂ Z (f );

I Y (f ) andZ (f ) vary isotopically with f , for [f ,Y (f )] ∈ B ;
I [f ,Y (f )] denotes the conjugacy class of (f ,Y (f )) by Möbius

transformations, using only Möbius transformations which
preserve the numbering of critical values.

For example, B could be the Thurston equivalence class of a
critically finite branched covering f0, with Y (f0) = Z (f0) = X (f0).
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The connection with Teichmüller space

If [ft ,Y (ft)] is a path in B then ft = ϕt ◦ f0 ◦ ψ−1
t where:

I ϕ0 and ψ0 are the identity is the identity and t 7→ ϕt and
t 7→ ψt are isotopies;

I ϕt(Y (f0)) = Y (ft), ψt(Z (f0) = Z (ft) and ϕt and ψt are
isotopic homeomorphisms through an isotopy which is
constant on Z (f0);

I ϕt is determined up to isotopy constant on Y (f0), and
post-composition by a Möbius transformation, by [ft ,Y (ft)]:
that is, as an element [ϕt ] of the Teichmüller space T (Y (f0))
of the sphere with marked set bijective to Y (f0).

This correspondence maps the universal cover of B to T (Y (f0))
with contractible fibres, so that B is a K (π, 1). The fundamental
group maps to a subgroup of the pure mapping class group
PMG (C,Y (f0)). Since B is a K (π, 1), the Topographer’s View is a
result about the structure of its fundamental group.
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The Topographer’s View

I obtained a result, or sequence of results, which I called The
Topographer’s View – which I do not particularly want to revisit at
this juncture, but it is not possible to separate the Topographer and
Resident’s views completely, because they complement each other.
The Topographer’s View of B = B(f0,Y (f0)) is a homotopy
equivalence to an ordered graph of countably manytopological
spaces of maps, where these topological spaces have some
geometric structure.
The “base” geometric pieces are the rational maps in B quotiented
by Möbius conjugation.
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An important part of the result, not easy, is that the inclusion of
each component V of rational maps in the larger space B is
injective on π1.

This result was only obtained for B consisting of degree two maps,
or maps “of polynomial type”, Z (f0) contained in the full orbit of
periodic critical points.
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Question: nature of the embedding

Having seen that the universal cover Ṽ of V embeds in T (Y (f0)),
one can obviously ask about the nature of the embedding. From
the group-theoretic point of view, this is a question about a
subgroup of the Pure Mapping Class Group PMG (C,Y (f0)) which
identifies with the fundamental group of the space of rational maps.
Of course the embedding is Lipschitz, but I know nothing about the
inverse map.
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A projection of the embedding

In the cases that we consider, f0 is of degree two, and
Y (f0) \ Z (f0) = Y \ Z is a single point, a critical value of f0,
denoted by v2 = v2(f0).
There is a natural projection from T (Y ) to the universal cover

C̃ \ Z of C \ Z , defined as follows.
Let πZ : T (Y )→ T (Z ) denote the natural projection and let dY
and dZ denote the Tiechmüller metrics on T (Y ) and T (Z )
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If [ϕt ] is a path in T (Y ) from a basepoint [ϕ0] = x0, then let
χt : C→ C be the unique homeomorphism minimizing
qc-distortion such that

πZ ([ϕt ]) = πZ ([χt ◦ ϕ0])

Then t 7→ χ−1
t ◦ ϕt(v2) defines an element of C̃ \ Z .

The composition with the embedding gives a map

ρ : Ṽ → C̃ \ Z .
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The Resident’s View Theorem (or part of it)

In the cases considered, V is a finite type Riemann surface of
negative Euler characteristic, and so, of course is C \ Z . So the
universal cover of each of these Riemann surfaces is the unit disc
up to conformal equivalence, with boundary the unit circle.

ρ : Ṽ → C̃ \ Z extends continuously and monotonically to map the

boundary ∂Ṽ into ∂C̃ \ Z with just countably many discontinuities
which can be naturally characterised, and where right and left limits
exist.
Once the continuity is proved, monotonicity is straightforward.
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boundary ∂Ṽ into ∂C̃ \ Z with just countably many discontinuities
which can be naturally characterised, and where right and left limits
exist.

Once the continuity is proved, monotonicity is straightforward.



The Resident’s View Theorem (or part of it)

In the cases considered, V is a finite type Riemann surface of
negative Euler characteristic, and so, of course is C \ Z . So the
universal cover of each of these Riemann surfaces is the unit disc
up to conformal equivalence, with boundary the unit circle.
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The limit of ρ along geodesics

We use dP to denote the Poincaré (or hyperbolic) metric on the
unit disc (the universal cover of C \ Z ).

Theorem
limx→∞ ρ(x) exists along any half geodesic segment ` in T (Y )
such that limx→∞ dP(0, ρ(x)) = +∞. In fact, if ` starts at x0 and
dP(0, ρ(z)) ≥ n for all z ∈ ` between x and y then for a suitable
constant C,

|ρ(x)− ρ(y)| ≤ Cne−n.

It therefore seems natural to consider geodesic segment with
endpoints in Ṽ (which is a subset of T (Y )) and to compare ρ on
the geodesic with a path with the same endpoints.
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the geodesic with a path with the same endpoints.



A key idea in the proof of this theorem is that geodesic segments
on C \ Z tend to have many self-intersections.

More precisely, given any geodesic segment γ of length ∆ there is a
constant C1 such if we consider lifted geodesics in the unit disc
starting from 0, every such geodesic segment of length n ends
within Euclidean distance C1e∆−n of a geodesic segment which has
endpoints within a bounded Poincaré distance of the endpoints of γ.

So we can choose γ to do anything we like by choosing ∆
sufficiently large, e.g. to cut C \ Z into topological discs with at
most one puncture.
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Continuity at punctures

It is relatively easy to check that limx→∞ ρ(x) exists along
half-geodesics in V ending at any puncture corresponding to a
rational map f at which v2(f ) ∈ Z (f ).

Note that f /∈ V because Z (g) ∪ {v2(g)} = Y (g) varies
isotopically for g ∈ V .

In these cases, limx→∞ ρ(x) is a “lift” of a point in Z – the
endpoint of a geodesic in C \ Z which ends at a point of Z .

It is also quite easy to show that, for a lift x of any other puncture
of V , either limy→x ρ(y) exists, or left and right limits exist outside
a horosphere.
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Discontinuities

The discontinuities x ∈ ∂Ṽ are the points such that
lim infy→x dP(0, ρ(y)) <∞. These are quite easily characterised
and also it is quite easy to show that right and left limits exist
outside a horosphere or Stoltz angle at such a point. However I
have never managed to find such a point of pseudo-Anosov type. It
is possible (although unlikely) that they do not exist.



Continuity along one path is sufficient

The points at which limits exist are sufficiently dense that the proof
of the Resident’s View is completed by showing that for each
x ∈ Ṽ , and for a choice of basepoint x0, there is just one path xt in
Ṽ from x0 to x on which the same uniform continuity for limits
holds, that is, if dP(ρ(xu), 0) ≥ n for all u ∈ [s, t] then
|ρ(xs)− ρ(xt)| ≤ C1ne−n.

It is natural to start with the geodesic segment in T (Y (f0)) and to
try to modify this to a path in Ṽ .

It is only this part of the proof that I have been revisiting.
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x ∈ Ṽ , and for a choice of basepoint x0, there is just one path xt in
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Use of a chain of geodesic segments to get the path in Ṽ

Suppose that [x0, x ] is a geodesic segment in T (Y ) with endpoints
x0 and x in Ṽ .

The path in Ṽ with these endpoints is obtained by taking
limn→∞ xn(x1) ∈ Ṽ corresponding to x1 ∈ [x0, x ], where:

dY (xn, xn+1)− dZ (xn, xn+1) ≤ C ;

a chain of long thick and dominants (αi , `i ) with `i ⊂ [xi , xi+1] and
αi ∩ αi+1 6= ∅ is non-cancelling, so that `i is a bounded
dαi -distance from [x1, xn] for 1 ≤ i < n.

From this we can deduce properties of the difference between ρ(x1)
and ρ(xn).
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In revisiting this proof, my hope was to use a result about chains of
long thick and dominants on Teichmüller geodesics which I found
rather hard to prove, and useful in another situation.

I am not quite there yet, but have found an application to the
analysis of the relation between τ([x , τ(x)]) and [τ(x), τ2(x)]
where τ is the appropriate analogue for B(f0,Y (f0)) of the
Thurston pullback.
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The use of Teichmüller space

The proof of Thurston’s Theorem for critically finite branched
coverings used a distance-non-increasing map
τ : T (X (f0))→ T (X (f0)) known as the Thurston pullback. For a
suitable integer k , τk is a uniform contraction on any set
x : d(x , τ(x) < M}. So there is a unique fixed point.

The map τ is given by τ([ϕ]) = [ψ] where ϕ ◦ f0 = s ◦ ψ where s is
a holomorphic branched covering and ψ is a homeomorphism.

This equation determines s and [ψ] uniquely.
If τ([ϕ]) = [ϕ] then ϕ ◦ f0 ◦ ϕ−1 = s, and s is critically finite and
Thurston equivalent to f0. Since τ is a contraction, (s, ϕ) is
unique, up to Möbius conjugation of s and post-composition of ϕ
by this same Möbius transformation.
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The iteration in the generalised case

in this more general case, the Teichm|’uller space used is T (Y ),
where Y contains all the critical values of f0 but may not be
forward invariant. Only Z ⊂ Y is forward invariant, and Z does not
contain all the critical values.
If we use the same formula as before and define τ([ϕ]) = [ψ] then
we can consider [ψ] as an element of T (Z ). But we want an
iteration on T (Y ).

There is a natural way to do this, simply by defining τ([ϕ]) by the
two conditions

πZ (τ([ϕ]) = πZ ([ψ])

dY ([ϕ], τ([ϕ])) = dZ ([ϕ], τ([ϕ])),

where dZ denotes Teichmüller distance in T (Z ).
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Properties of τ : decreasing along orbits

τk : T (Y )→ T (Y ) is not a global contraction for any k However

dY (τ([ϕ]), τ2([ϕ])) ≤ dY ([ϕ], τ([ϕ])),

and for a suitable n depending only on #(Y ),

dY (τn([ϕ]), τn+1([ϕ])) < dY ([ϕ], τ([ϕ])).
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Properties of τ : the fixed set

The most important property is the characterisation of the fixed set
of τ .

If τ([ϕ]) = [ϕ] then s(ϕ(Z ) = ϕ(Z ) where s is the holomorphic
map such that ϕ ◦ f0 = s ◦ ψ. Also, ϕ and ψ are isotopic via an
isotopy which is constant on Z .

This means that the fixed set of τ is the union of all the sets
Ṽ ⊂ T (Y ), where V runs over the components of rational maps in
B .
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Definition of the sequence xn

The sequence xn = xn(x1) is then obtained by defining xn+1 to be a
modification of τ(xn).


