
Basics about holomorphic maps
Recall some facts about holomorphic maps. If

z = x+ iy

f(z) = u(x, y) + iv(x, y)

then
f ′(z) = ux + ivx = vy − iuy.

Considered as a function from R2 to R2, the derivative is(
ux uy
vx vy

)
=
(
ux −vx
vx ux

)
If f ′(z) 6= 0 then u2

x + v2
x 6= 0. Lengths are not usually preserved, but angles are.

The action of the derivative at z0 is multiplication by f ′(z0). Conversely, suppose
that f : U(⊂ R2) → R2 is continuous, and continuously differentiable except at
finitely many points, and the dervative Df is invertible, has positive determinant and
preserves angles except at finitely many points. Write f = (u, v). The derivative Df
is (

ux uy
vx vy

)
If angles are to be preserved then this must be of the form(

r cos θ −r sin θ
r sin θ r cos θ

)
So the Cauchy-Riemann equations

ux = vy,

vx = −uy
are satisfied, and hence f is holomorphic, except possibly at finitely many points. But
since f is continuous, any singularities are removable and f is holomorphic on U .

How to write Riemannian metrics in the plane
The usual classical form of writing a Riemannian metric in the plane is

adx2 + 2bdxdy + cdy2

where a, b, c are real-valued functions of (x, y), and the symmetric matrix(
a b
b c

)
is positive definite. For this we need

a+ c > 0,



ac− b2 > 0.

The classical notation is suggested by the formula for the length of a curve (x(t), y(t))
(t ∈ I) in this metric:∫

I

√
a(dx/dt)2 + 2b(dx/dt)(dy/dt) + c(dy/dt)2dt

Field of Ellipses
A 2× 2 symmetric positive definite matrix A defines an ellipse with equation

(
x y

)
A

(
x
y

)
= 1

The constant on the righthand side is unimportant. Note that

A = PT∆P,

with P orthogonal and ∆ diagonal. Interchanging the rows of P if necessary, we can
assume that P has determinant 1. Then we get the standard form

(
X Y

)
∆
(
X
Y

)
= 1

for the ellipse by making the change of variable(
X
Y

)
= P

(
x
y

)
The major and minor axes of the ellipse are orthogonal to each other and are given
by the columns of U (not necessarily in that order) provided the eigenvalues of A are
distinct.

This association of an ellipse (up to scale) to each point in the domain is called a
field of ellipses. The major axis at each point — up to direction – gives a line field. It
is undefined when the eigenvalues of A are equal.

Complex form of a Riemannian metric
In formulating the measurable Riemann mapping theorem it is more convenient to

write the metric adx2 + 2bdxdy + cdy2

in another form:

λ|dz + µdz|2 = λ|µ|.|µ−1dz + dz|2

where λ > 0 and |µ| < 1 and λ and µ = µ1 + iµ2 are functions of z. the function µ is
called the Beltrami differential (of the Riemannian metric). To get between the two:

2λµ2 = b,
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λ(1 + |µ|2 + 2µ1) = a,

λ(1 + |µ|2 − 2µ1) = c.

Then
ac− b2 = λ2(1− |µ|2)2

and
ac− b2

(a+ c)2
=

1− |µ|2

1 + |µ|2
.

So µ is bounded from 1 if the ratio of the eigenvalues ofA is bounded above and below,
where

A =
(
a b
b c

)
There is a relation between the argument of µ(z) and the major axis of the ellipse

associated to the metric at z. If ±v is the direction of the major axis then

arg(µ) = arg(v−2).

Transforming Riemannian metrics
If f : U → V is a diffeomorphism between open subsets of R2, and σ is a Rieman-

nian metric on V then we can define a Riemannian metric f∗σ on U by the following
formula. If σ is given in classical terminology by adx2 + 2bdxdy + cdy2 then f∗σ is
given by (

dx dy
)
DfT

(
a b
b c

)
Df

(
dx
dy

)
where Df is the 2× 2 matrix representing the derivative. If `1(γ1) denotes length of a
path γ1 with respect to σ and `2(γ2) denotes length of a path γ2 with respect to f∗(σ)
then

`2(γ) = `1(f ◦ γ)

This follows from the definition of f∗σ and the chain rule for differentiating f ◦ γ.
Note that f∗ is a contravariant functor, that is

(f ◦ g)∗σ = g∗f∗σ

(where defined).

Transforming the standard metric in the complex notation
The standard metric σ0 is dx2 + dy2 = |dz|2. Suppose that f : U → V is

a diffeomorphism between open subsets U and V of C. So f is a complex-valued
function on a complex domain, and the same is true for the partial derivatives fx and
fy . Write

fz =
1
2

(fx − ify)
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fz =
1
2

(fx + ify)

If f is holomorphic, then, by the Cauchy-Riemann equations, fz = f ′ and fz = 0.
Write

dz = dx+ idy

dz = dx− idy

Then
fxdx+ fydy = fzdz + fzdz

Then f∗σ0 is given by

|fxdx+ fydy|2 = |fzdz + fzdz|2

= |fz|2
∣∣∣∣dz +

fz
fz
dz

∣∣∣∣2

Transforming fields of ellipses and Beltrami differentials
If σ0 is the standard metric dx2 + dy2 = |dz|2 and g is holomorphic then write

f∗σ0 = λ1|dz + µ1dz|2

g∗f∗σ0 = λ2|dz + µ2dz|2

Then

µ2 =
g(z)
g(z)

µ1 ◦ g

λ2 = |g′|λ1 ◦ g

In particular,
‖µ2‖∞ = ‖µ1‖∞.

Also since
D(f ◦ g)TD(f ◦ g) = DgT (DfTDf)Dg

the major and minor axes for the ellipse at z for g∗f∗σ0 map under Dg to those for
f∗σ. If the major axis of the ellipse at z for g∗f∗σ0 is in the direction of ±v (v ∈ C)
then the direction for f∗σ0 at g(z) is ±g′(z)v.

The Riemann Mapping Theorem
Write

D = {z : |z| < 1}

The classical Riemann mapping theorem (easy version) says that if U is an simply
connected proper open subset of C, then there exists a holomorphic bijection ϕ : U →
D. One way to prove this (not the easiest) would be to find an orientation-preserving
diffeomorphism g : D → U , giving rise to a Riemannian metric g∗σ0 onD . As before,
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σ0 denotes the standard metric |dz|2 on U (or on any domain in C). Then suppose we
can find an o-p diffeomorphism f : D → D with

f∗σ0 = λg∗σ0

for a strictly positive function λ. Then

(g−1)∗f∗σ0 = (f ◦ g−1)∗σ0 = λσ0

So
D(f ◦ g−1)TD(f ◦ g) = λI

Then D(f ◦ g−1) must be a multiple of an orthogonal matrix and of positve determi-
nant. So the partial derivatives of f ◦ g−1 satisfy the Cauchy-Riemann equations, and
f ◦ g−1 : U → D is holomorphic.

The Measurable Riemann Mapping Theorem
This theorem has a long history. The version usually now used is that of L. Ahlfors

and L.Bers in Annals of Math., 72 (1960), 385-404. There are versions for C, C and
the unit disc D. Let U be any one of these three.
Theorem 1 Suppose that µ ∈ L∞(U) with ‖µ‖∞ < 1. Then there exists a homeo-
morphism f : U → U which is differentiable a.e., with partial derivatives locally Lp

for some p > 2 and
fz
fz

= µ

That is, for some λ > 0
f∗σ0 = λ|dz + µdz|2.

Moreover f is unique up to left composition with a Möbius transformation.
Such a homeomorphism f is quasi-conformal (and o-p). It is holomorphic if µ = 0

a.e.

Quasi-conformal Maps
The standard reference is Ahlfors’ book
Lectures on Quasiconformal mappings
Take d to be the Euclidean metric if D = C or D and the spherical metric if

U = C. Let B(z, r) denote the ball of radius r centred on z in this metric. The
simplest topological definition for a quasiconformal map is the following. f : U → U
is quasiconformal if it is a homeomorphism and there exists a constant K1 such that
for all z ∈ U and each ball B(z, r), there is r1 such that

B(f(z), r1) ⊂ f(B(z, r)) ⊂ B(f(z),K1r1)

Ahlfors gives two definitions which are equivalent to this, and he proves their equiva-
lence, but neither of them is this definition (for good reason).
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Modulus of a topological rectangle
Any closed topological disc R in the plane with four marked points xi (1 ≤ i ≤ 4

in anticlockwise direction) on the boundary is homeomorphic to a rectangle, with the
four marked points mapping to the vertices. So R can therefore be referred to as a
topological rectangle. A strengthening of the Riemann mapping theorem imples that
this homeomorphism can be realised by a map which is holomorphic on the interior.
For unique numbers a > 0, b > 0 there is a homeomorphism

ϕ : R→ {x+ iy : 0 ≤ x ≤ a, 0 ≤ y ≤ b}

whjich is holmorphic on the interior of R and mapping x1 to 0, x2 to a, x3 to a + ib,
and x4 to ib. a/b is then defined to be the modulus mod(R) of R.

Ahlfors’ definitions
Definition 1 A homeomorphism ϕ : U → U is K -quasiconformal if for any topolog-
ical rectangle R

mod(R)
K

≤ mod(R) ≤ Kmod(R).

Definition 2 A homeomorphism ϕ : U → U is K -quasiconformal if partial deriva-
tives fx, fy exist a.e. in U , and are locally L1along a.e. horizontal line in U , and a.e.
vertical line in U , and

|fz| ≤ k|fz|
where

k =
K − 1
K + 1

.

Continuity, Differentiability, and Holomorphicity
The Ahlfors Bers paper is famous for results about families of Beltrami differentials

which vary continuously, differentiably or holomorphically. We keep to the notation of
Theorem 1.
Theorem 2 Let λ → µλ : Λ → L∞(U) (λ ∈ Λ be a continuous family of Beltrami
differentials with ‖µλ‖∞ ≤ k for some k < 1. Then λ→ fµλ

is:

• locally uniformly continuous in C(U)

• locally Hölder on Cα(U) for some α > 0

• the partial derivatives (fµλ
)x and (fµλ

)y are continuous in the local Lp topol-
ogy.

If λ→ µλ : Λ is locally uniformly differentiable/holomorphic in L∞, then λ→ fµλ
is

differentiable/holomorphic with respect to the same list of seminorms. In particular
this theorem implies that if λ→ µλ : Λ→ L∞(U) is continuous/holmorphic, then so
is

λ→ fµλ
(z) : Λ→ U

for each z ∈ U .
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