Basics about holomorphic maps
Recall some facts about holomorphic maps. If

z=x+ 1y

f(z) = u(z,y) +iv(z,y)
then
f/(Z) = Uy + 1V, = Uy — iuy.

Considered as a function from R? to R2, the derivative is

Uy Uy ) _ [Uz —VUg
v vy )\ ug
If f’(2) # 0 then u2 + v2 # 0. Lengths are not usually preserved, but angles are.
The action of the derivative at z is multiplication by f’(29). Conversely, suppose
that f : U(C R?) — R? is continuous, and continuously differentiable except at

finitely many points, and the dervative D f is invertible, has positive determinant and
preserves angles except at finitely many points. Write f = (u,v). The derivative D f

is
Uy Uy
Uy Uy
If angles are to be preserved then this must be of the form
rcosf —rsind
rsinf  rcosf
So the Cauchy-Riemann equations

Uy = Vy,

Vg = —Uy

are satisfied, and hence f is holomorphic, except possibly at finitely many points. But
since f is continuous, any singularities are removable and f is holomorphic on U.

How to write Riemannian metrics in the plane
The usual classical form of writing a Riemannian metric in the plane is

adz? + 2bdxdy + cdy?

where a, b, ¢ are real-valued functions of (z,y), and the symmetric matrix
a b
b ¢

a+c>0,

is positive definite. For this we need



ac —b% > 0.

The classical notation is suggested by the formula for the length of a curve (x(t), y(t))
(t € I) in this metric:

/ Va(dz/dt)? + 2b(dx/dt)(dy/dt) + c(dy/dt)2dt
I

Field of Ellipses
A 2 x 2 symmetric positive definite matrix A defines an ellipse with equation

(x y)A@ 1

The constant on the righthand side is unimportant. Note that
A=PTAP,

with P orthogonal and A diagonal. Interchanging the rows of P if necessary, we can
assume that P has determinant 1. Then we get the standard form

(X Y)A<§>:1

for the ellipse by making the change of variable

¥)="()

The major and minor axes of the ellipse are orthogonal to each other and are given
by the columns of U (not necessarily in that order) provided the eigenvalues of A are
distinct.

This association of an ellipse (up to scale) to each point in the domain is called a
field of ellipses. The major axis at each point — up to direction — gives a line field. It
is undefined when the eigenvalues of A are equal.

Complex form of a Riemannian metric

In formulating the measurable Riemann mapping theorem it is more convenient to
write the metric adz? + 2bdxdy + cdy?

in another form:

Ndz + pdz|2 = Np|.|pdz + dz|?

where A > 0 and |u| < 1 and A and p = pq + ipo are functions of z. the function y is
called the Beltrami differential (of the Riemannian metric). To get between the two:

2)\[142 = b,



A+ |ul? +2m) = a,
AL+ |ul? =2m) = c.

Then
ac — b7 = X2(1 — [u]?)?

and
ac—b* 11— |uf?

(a+e)>  14|uf

So p is bounded from 1 if the ratio of the eigenvalues of A is bounded above and below,

where
a b
=5 0)

There is a relation between the argument of u(z) and the major axis of the ellipse
associated to the metric at z. If v is the direction of the major axis then

arg (1) = arg(v™?).

Transforming Riemannian metrics

If f : U — V is a diffeomorphism between open subsets of R?, and ¢ is a Rieman-
nian metric on V' then we can define a Riemannian metric f*o on U by the following
formula. If ¢ is given in classical terminology by adxz? + 2bdxdy + cdy? then f*o is

given by
e w103 o)

where D f is the 2 x 2 matrix representing the derivative. If ¢1 (1) denotes length of a
path ; with respect to o and ¢5(2) denotes length of a path 5 with respect to f*(o)
then

la(7) = ta(f o)

This follows from the definition of f*o and the chain rule for differentiating f o ~.
Note that f* is a contravariant functor, that is

(feg)lo=g"f"0

(where defined).

Transforming the standard metric in the complex notation

The standard metric o is dz? + dy®> = |dz|?>. Suppose that f : U — V is
a diffeomorphism between open subsets U and V' of C. So f is a complex-valued
function on a complex domain, and the same is true for the partial derivatives f, and
fy. Write

1 .
fo = 5o =ify)



1 .
fo= (e +ify)

If f is holomorphic, then, by the Cauchy-Riemann equations, f, = f’ and fz = 0.
Write
dz = dzx + idy
dz = dx — idy
Then
fmdw + fydy = deZ + f?dz

Then f*og is given by

|fmd$ + fydy|2 = |fzdz + fEdE‘Q

2
:mﬁw+%ﬁ

Transforming fields of ellipses and Beltrami differentials
If o is the standard metric dz? + dy? = |dz|? and g is holomorphic then write

ffoo=A|dz+ ,U,1d5|2

g o0 = Aaldz + padz]?

Then
_9(z)
2 = =~ p10g
9(z)
A =lg'[Aog
In particular,
[p2lloc = [l p1]loc-

Also since
D(fog)"D(fog)=Dg"(Df"Df)Dg

the major and minor axes for the ellipse at z for ¢* f*o¢ map under Dg to those for
f*o. If the major axis of the ellipse at z for g* f*oy is in the direction of +v (v € C)
then the direction for f*oq at g(z) is £¢'(2)v.

The Riemann Mapping Theorem
Write
D={z:|z| <1}

The classical Riemann mapping theorem (easy version) says that if U is an simply
connected proper open subset of C, then there exists a holomorphic bijection ¢ : U —
D. One way to prove this (not the easiest) would be to find an orientation-preserving
diffeomorphism g : D — U, giving rise to a Riemannian metric g*og onD . As before,



oo denotes the standard metric |dz|? on U (or on any domain in C). Then suppose we
can find an o-p diffeomorphism f : D — D with

[0 = Ag* oo
for a strictly positive function A\. Then
(g7 frao=(fog ") o0 = Aag

So
D(fog 1)'D(fog) =M

Then D(f o g—') must be a multiple of an orthogonal matrix and of positve determi-
nant. So the partial derivatives of f o g~! satisfy the Cauchy-Riemann equations, and
fog™':U — D is holomorphic.

The Measurable Riemann Mapping Theorem

This theorem has a long history. The version usually now used is that of L. Ahlfors
and L.Bers in Annals of Math., 72 (1960), 385-404. There are versions for C, C and
the unit disc D. Let U be any one of these three.
Theorem 1 Suppose that p € L (U) with ||p||ec < 1. Then there exists a homeo-
morphism f : U — U which is differentiable a.e., with partial derivatives locally LP
for some p > 2 and 5

=p
e

That is, for some \ > 0
froo = Ndz + pdz|*.

Moreover f is unique up to left composition with a Mobius transformation.
Such a homeomorphism f is quasi-conformal (and o-p). It is holomorphic if 4 = 0
a.e.

Quasi-conformal Maps

The standard reference is Ahlfors’ book

Lectures on Quasiconformal mappings

Take d to be the Euclidean metric if D = C or D and the spherical metric if
U = C. Let B(z,r) denote the ball of radius r centred on z in this metric. The
simplest topological definition for a quasiconformal map is the following. f : U — U
is quasiconformal if it is a homeomorphism and there exists a constant /; such that
for all z € U and each ball B(z, ), there is r; such that

B(f(z),r1) C f(B(z,7)) C B(f(2), K1m1)

Ahlfors gives two definitions which are equivalent to this, and he proves their equiva-
lence, but neither of them is this definition (for good reason).



Modulus of a topological rectangle

Any closed topological disc R in the plane with four marked points x; (1 <7 < 4
in anticlockwise direction) on the boundary is homeomorphic to a rectangle, with the
four marked points mapping to the vertices. So R can therefore be referred to as a
topological rectangle. A strengthening of the Riemann mapping theorem imples that
this homeomorphism can be realised by a map which is holomorphic on the interior.
For unique numbers a > 0, b > 0 there is a homeomorphism

p:R—={z+iy:0<z<a0<y<b}

whyjich is holmorphic on the interior of R and mapping x; to 0, 3 to a, x3 to a + b,
and x4 to ib. a/b is then defined to be the modulus mod(R) of R.

Ahlfors’ definitions
Definition 1 A homeomorphism ¢ : U — U is K -quasiconformal if for any topolog-

ical rectangle R

wod(R) 1 od(R) < Kmod(R).

Definition 2 A homeomorphism ¢ : U — U is K -quasiconformal if partial deriva-
tives fy, fy exist a.e. in U, and are locally L'along a.e. horizontal line in U, and a.e.
vertical line in U, and

where K1
k= —.
K+1

Continuity, Differentiability, and Holomorphicity

The Ahlfors Bers paper is famous for results about families of Beltrami differentials
which vary continuously, differentiably or holomorphically. We keep to the notation of
Theorem 1.
Theorem 2 Let A — puy : A — L®(U) (A € A be a continuous family of Beltrami
differentials with ||pux|| s < k for some k < 1. Then X — f,,, is:

e locally uniformly continuous in C(U)

e locally Holder on C*(U) for some a > 0

e the partial derivatives (f,, )z and (f,, ), are continuous in the local LP topol-
0gy.

If X — px : Ais locally uniformly differentiable/holomorphic in L™, then X — f,, is
differentiable/holomorphic with respect to the same list of seminorms. In particular
this theorem implies that if A — uy : A — L°°(U) is continuous/holmorphic, then so
is

A= fu(z):A=TU

foreach z € U.



