
Symmetri X9 singularitiesand the omplex aÆne reetion groupsVitor Goryunovto Vladimir Igorevihon the oasion of his 70th birthdayAbstratWe establish a natural orrespondene between the �nite order automorphisms ofthe funtion singularities X9 and the omplex rystallographi groups. The ompletelist of the related objets is obtained.Relations between singularities and Coxeter groups is a lassial area of singularity the-ory, going bak to the fundamental works by Arnold [1℄ and Brieskorn [6℄. Reently it wasobserved that these relations an be extended to inlude symmetri simple funtions singu-larities on one hand and ertain Shephard-Todd groups on the other [11, 12, 13℄. In thispaper we are making a further natural step in this diretion by relating symmetries of thefuntion singularities X9 to a number of Popov's omplex rystallographi groups [16℄. Ap-pearane of omplex aÆne reetion groups in equivariant monodromy of paraboli funtionsingularities with symmetry is the �rst appearane of suh groups in any singularity ontext(see also [14℄).The struture of the paper is as follows.Setion 1 introdues the rystallographi groups to be related to the funtion singularities.In addition, in Subsetion 1.2 we desribe a way to onstrut a omplex aÆne reetion groupfrom a semi-de�nite hermitian form of orank 1.Setion 2 lists �nite order automorphisms of the X9 funtions. It also shows how therank 2 kernel of the X9 hermitian intersetion form is shared by various harater subspaesH� of the symmetry ation on the middle vanishing homology.Setion 3 is devoted to the proof of the main result of the paper that all the omplex aÆnereetion groups arising from the equivariant monodromy of the symmetri X9 singularitieson the appropriate H� via the onstrution of Subsetion 1.2 are atually rystallographi.
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1 AÆne reetion groups1.1 The omplex rystallographi groupsAn aÆne reetion in C n is an aÆne unitary transformation idential on a hyperplane. Thehyperplane is alled the mirror of the reetion. A group generated by suh reetions andhaving a ompat fundamental domain is alled omplex rystallographi. These groups werelassi�ed by V. L. Popov in [16℄.For a omplex rystallographi group W , we denote by L � Un its linear part, that is theimage of W under the natural map W ! Un. The group L is a Shephard-Todd group. LetT be the maximal translation subgroup ofW . Then W is an extension of L by T . Unlike thereal ase, W may not be the semi-diret produt of its linear and translation parts. However,all the groups we will need in our urrent singularity ontext are suh produts.We shall now desribe the �ve groups to be involved. Mirrors of L will be identi�ed bytheir normals whih we shall all roots.The linear parts of the groups we will need are the Shephard-Todd groups L = G(4; 1; 2),G(6; 2; 2); G3(6); G8; G26 (see [17, 16℄). Their Dynkin diagrams are given in Figure 1. Thevertex set of a diagram there represents a set of generating reetions. Eah vertex is aunit root and is marked with the order of the reetion, order 2 omitted. An edge a! b isequipped with the hermitian produt ha; bi. As usual, ! = e2�i=3. The edge orientation isomitted if the produt is real, and there is no edge at all if the roots are orthogonal. All thediagrams were onstruted using the roots from Table 2 of [16℄ (see also [9℄). The rank ofthe group G(6; 2; 2) is 2. The rank of any other group is equal to the number of verties inits diagram.
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1.2 AÆne groups de�ned by orank 1 hermitian formsThe relation between the rystallographi groups and funtion singularities we are going toestablish is based on the following onstrution of a omplex reetion group from a orank1 hermitian form (f. [5℄).Let eq be a orank 1 semi-de�nite hermitian form on eV = C n+1 . Choose a basis e0; e1; : : : ; enin eV so that e0 is in the kernel K of the form. The span of the ej>0 will be denoted V ,and v will stay for the V -omponent of ev 2 eV : ev = v0e0 + v. In all the matrix expressionsbelow, with a minor abuse of the notation, elements v 2 V will be treated as olumns oftheir oordinates vj>0. For example, eq(ev; ew) = vTQw, where Q = (eq(ei; ej))i;j>0 is the matrixof the restrition q = eqjV .We onsider the spae eV � dual to eV as K� � V . For oordinates on it we hoose�0; �1; : : : ; �n so that a linear funtional e� on eV is written ase�(ev) = v0�0 + vTQ� = v0�0 + q(v; �):Take a pseudo-reetion on eV (that is a transformation given by the same formula as areetion had the form eq been non-degenerate) with a root eu =2 K and the eigenvalue �:A : ev 7! ev � (1� �)eq(ev; eu)eu=eq(eu; eu) = �v0 + q(v; u)u0�e0 + �v + q(v; u)u�;where  = (�� 1)=q(u; u). For the dual transformation A�, we have(A�e�)ev = e�(A�1ev) = v0�0 + vTQ� + vTQ(u0�0 + uTQ�)u = v0�0 + vTQ(� + e�(eu)u) :Therefore, the dual transformation sends eah of the hyperplanes �0 = onst into itself andon suh a hyperplane it ats as� 7! � + e�(eu)u = �� (1� �)�0u0 + q(�; u)q(u; u) u ; (1)where q is the hermitian form on V onjugate to q: it has the matrix Q = QT in the basisej>0. If �0 6= 0, then this is an aÆne reetion on the hyperplane � = f�0 = onstg ' V ,with the root u, mirror e�(eu) = �0u0 + q(�; u) = 0 and eigenvalue �. For u0 = 0, thetransformation is linear.2 Smoothable symmetries of X9Now we introdue the funtion singularities we will be dealing with.Let f be a holomorphi funtion-germ on (C n ; 0), with an isolated singularity at theorigin. Consider a di�eomorphism-germ g of (C n ; 0) sending the hypersurfae f = 0 intoitself. It multiplies f by a funtion  not vanishing at the origin. In what follows we assumeg is of a �nite order, so  is a onstant, a root of unity.Let O(g; ) be the spae of all holomorphi funtion-germs on (C n ; 0) multiplied by under the ation of g. The group Rg of biholomorphism-germs of (C n ; 0) ommuting with3



g ats on O(g; ). The orresponding equivalene is a geometri equivalene in the sense ofDamon [10℄. Therefore, the base of an Rg-miniversal deformation of f in O(g; ) is smoothand suh a deformation an be onstruted in the standard way [10, 4℄.De�nition 2.1 An automorphism g of a hypersurfae f = 0 is alled smoothable if anRg-versal deformation of funtion f ontains members with smooth zero sets.If g is suh an automorphism, then the zero level M of a generi member of an Rg-versaldeformation is a g-invariant Milnor �bre of f . Hene, g ats on the homology of M andprovides the splitting Hn�1(M; C ) = ��H� ; �order(g) = 1 ; (2)of the middle homology, in whih g ats on an individual summand as a multipliation bythe harater �. The equivariant monodromy group, that is the monodromy within an Rg-versal deformation of f , preserves the splitting. The monodromy ation on the H� will beour soure of omplex rystallographi groups, upon an appliation of the onstrution ofSetion 1.2.We restrit our attention to lassi�ation of smoothable automorphisms of urves of theX9 family x4 + ax2y2 + y4 = 0 ; a2 6= 4: (3)The lassi�ation is up to holomorphi hanges of the oordinates. Our atual major aim is toobtain the homology splitting (2), therefore we will not distinguish between automorphismsgenerating the same yli groups. Moreover, we prefer to have a hermitian intersetion formon the middle homology rather than skew-hermitian. Beause of that, we stabilise equation(3) by adding z2 to the left-hand side. Respetively, g starts ating on z by multipliationby one of two possible square roots of . We all this ation stabilised . The ambiguityin hoosing a root a�ets only the harater assignment in (2), not the diret summandsthemselves. Sine only the summands are ruial for us, we give just one of the hoies inour lassi�ation. In partiular, we set g at trivially on z if the funtion is g-invariant.Theorem 2.1 The omplete list of stabilised smoothable automorphisms of all X9 urves isgiven in Table 1.In the Table:"r = e2�i=r;the versal monomials are those to add with arbitrary oeÆients to f to obtain an Rg-miniversal deformation;the kernel � are the values of the harater for whih the restritions of the hermitianintersetion form from H2(M; C ) to the H� are degenerate (see Proposition 2.1 below);the aÆne groups are the omplex rystallographi groups whih will be onstruted inSetion 3 from the monodromy on the H� on whih the intersetion form has orank 1;similar to [7, 11℄, if the disriminant of a symmetri funtion singularity oinides withthat of a Weyl group, the group enters the notation, the supersripts indiating the ordersof the Piard-Lefshetz operators (see Setion 3);4



the K4;2 is the unimodular boundary funtion singularity of [2, 3℄;in all the other ases, the notation shows the symmetry group of the singularity, with thevertial line telling that the funtion is invariant under the ation and the slash indiatingthat it is equivariant (f. [13, 12℄).About the proof of Theorem 2.1. The lassi�ation proess is based on the onsiderationhow the automorphism permutes the four branhes of the urve (3). The smoothability isheavily restrited by an obvious observation that, one a smoothable di�eomorphism of theplane has been diagonalised, it multiplies funtion f by the same fator by whih it multipliesone of the monomials 1, x, y (otherwise the zero level of any symmetri perturbation off would have had a ritial point at the origin). The rest of the lassi�ation is ratherstraightforward. �For an appliation of the onstrution of Setion 1.2, it is ruial to know how the rank2 kernel of the X9 hermitian intersetion form is shared by the harater subspaes.Proposition 2.1 The kernel values of the harater � for the symmetri X9 singularitiesare those given in Table 1.Proof. We distinguish between invariant and equivariant ases, that is when 1 respetivelyis or is not among the versal monomials.a) In the invariant ases, the kernel haraters are the eigenvalues of the ation of g onthe residue forms dxdydz=df and q4(x; y)dxdydz=df , where q4(x; y) is a degree 4 monomialde�ning a non-trivial element in the loal algebra of f . The span of the two forms is dual tothe kernel of the intersetion form on the homology.b) We do the equivariant funtions ase-by-ase, mainly using the fat that yles in thekernel of the intersetion form are invariant under any monodromy.X9=Z3. The monodromy � = e2�it, 0 � t � 1, in the family f(x; y; z) + �x = 0 oinideswith the transformation g, hene all the kernel of the X9 intersetion form is in H�=1.X9=Z9. The top-dimensional strata of the disriminant of X9=Z3 are 3A1 only. Threeordinary Morse 2-yles e, ge and g2e vanishing simultaneously provide an elemente + ��1ge+ ��2g2e 2 H� ; �3 = 1 : (4)This implies that the ranks of all of the three H� are the same, 3. On the other hand,the automorphism of X9=Z3 is the ube of that of X9=Z9. Hene the kernel haraters ofX9=Z9 are ubi roots of unity. Sine the kernel harater set must be sent into itself bythe omplex onjugation, we see that for X9=Z9 the kernel of the X9 form is spanned by theone-dimensional spaes H! and H!.X9=Z12. Take M = fx4 + y4 + z2 � x = 0g as a symmetri Milnor �bre. It retrats tothe Z12-orbit of the 2-ell � = f(x; y; z) : 0 � x � 1; y � 0; z 2 Rg � M \ R3 . The linearombination 11Xj=0 ��jgj� ; �12 = 1 ; �3 6= 1 ; (5)5



Table 1: Symmetri X9 singularitiesf g : x; y; z 7! jgj versalmonomials kernel� aÆnegroup notationx4 ix;�y; z 4 1; y2; x2y �i [G(4; 1; 2)℄2 X9jZ4+y4+z2 ix; y; z 4 1; y; y2 �i [K8℄ A(4)3!x; i!y; !z 12 x �i � X9=Z12x4 ix; i!y; z 12 1 �!;�! � X9jZ12+xy3+z2 �x;�!y; z 6 1; x2 !; ! [K3(6)℄ B(6;3)2x; !y; z 3 1; x; x2; x3 !; ! [K26℄1 C(2;3)4!x; !y;�!z 6 x; y2; x2y �!;�! [G(6; 2; 2)℄2 X9=Z6"9x; "49y; "29z 9 y !; ! � X9=Z9x3y+xy3 + z2 "8x;�"8y; z 8 1 �i � X9jZ8x4 ix;�iy; z 4 1; xy; x2y2 1 � (X9jZ4)0+ax2y2+y4 �x; y; z 2 1; y; y2; x2; x2y; x2y2 �1 � K4;2+z2 !x;�!y; !z 6 x; x2y2 �1 � (X9=Z6)0ix; iy; z 4 1; x2y2 �1 � (X9jZ4)00�x;�y; z 2 1; x2; xy; y2; x2y2 1 � (X9jZ2)00!x; !y; !z 3 x; y; x2y2 1 � X9=Z3
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spans H�. On the other hand, the quasi-homogeneous monodromy in the family x4 + y4 +z2 � e2�itx = 0, 0 � t � 1, is g4. Hene the kernel haraters satisfy �4 = 1. With � = 1prohibited, this gives � = �i.(X9=Z6)0. The square of the X9=Z12 automorphism is the inverse of that of (X9=Z6)0.So, the above implies that the kernel of the X9 form is now the rank 2 spae H�=�1.X9=Z6. The deformation f(x; y; z)+�x2y gives an adjaeny of X9=Z6 to the singularityD6=Z6 of [13, 12℄, all of whose H�, �3 = �1, are of rank 2. The multipliity of the X9=Z6disriminant is 4, one higher than that of D6=Z6, the inrease due to the 3A1 stratum. Thisimplies that the dimension of eah of the three harater spaes of X9=Z6 is 3. Sine theranks of the intersetion forms on them are at least 2, the haraters �! and �! are kernel.�Questions 2.1 a) A bit more areful alulations show that, for all symmetri X9 singu-larities, the rank of a harater subspae with a degenerate intersetion form is equal to thedimension of the base of an equivariant miniversal deformation, that is to the number of theversal monomials. The same is true for the J10 symmetries of [14℄. Why is this so?b) It would be also good to understand why the kernel of the intersetion form does notsplit exatly when the symmetri singularity has a module.3 Relating symmetri X9 singularities andrystallographi groupsWe all a symmetriX9 singularity interesting if the monodromy group on one of its haratersubspaes gives rise to an aÆne omplex reetion group (not neessarily rystallographi)via the onstrution of Setion 1.2. Neessary onditions for this are:� the rank 2 kernel of the X9 hermitian intersetion form splits between two haratersubspaes;� eah of the two subspaes must be of rank at least 2;� the multipliity of the disriminant of a symmetri singularity must be at least 2, sinean aÆne reetion group has at least two generators whih must be oming from thePiard-Lefshetz operators.Aording to Table 1, the �rst ondition eliminates all moduli ases. The last onditioneliminates four further singularities with one-dimensional bases of miniversal deformations.This leaves exatly 5 interesting symmetries, those to whih the table assigns aÆne groups.In Figure 2 the disriminants of three interesting X9 singularities are shown. The de-generation types to whih the top strata orrespond are indiated. The X9=Z6 disriminantis that of B3 with an additional smooth omponent. The order �; �;  of the deformationparameters is by the inrease of their quasi-homogeneous weight in the deformations usingthe versal monomials of Table 1. The equation of the X9jZ4 disriminant is(�2 � 4)�(� � �2=4)2 � 4� = 0 :7
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Figure 2: Disriminants of the symmetri X9 singularities.Two disriminants missing from Figure 2 are those of singularities A(4)3 and C(2;3)4 . The �rstof them is the standard A3 swallowtail, with the top stratum A3. The seond is the standardC4 disriminant with the smooth and singular omponents 3A1 and A2 respetively.The main result of this paper isTheorem 3.1 Consider an interesting symmetri X9 singularity. Let � be one of its kernelharaters, and � the hyperplane in H�� formed by all linear funtionals taking a �xed non{zero value on a �xed element of the kernel of the hermitian intersetion form on H�. Then theequivariant monodromy group of the singularity ating on � is the omplex rystallographigroup given in Table 1.Proof. By the methods developed in [11, 12, 13℄, it is possible to onstrut, for eah ofthe H� of the Theorem, distinguished sets of vanishing �-yles whose Dynkin diagrams arethose of Figure 3. The sets are bases of the H�, exept for the X9=Z6 ase that has onerelation.We use the following onventions in the diagrams. The verties are elements of a dis-tinguished set of �-yles. A �-yle vanishing at a kA� stratum has the self-intersetionnumber �k(� + 1) whih is written by the vertex. The order of the orresponding Piard-Lefshetz operator is � + 1 (written inside the vertex, order 2 omitted). Simple, double andtriple edges indiate that the relations between the pairs of the operators are aba = bab,(ab)2 = (ba)2 and (ab)3 = (ba)3 respetively. The marking and orientation of the edges aresimilar to those in Figure 1.The idea behind the yle onstrution is as follows. Consider the quotient set M 0 =M=Zm of a symmetri Milnor �bre by the group generated by the automorphism g. Thisset is strati�ed aording to the stationary subgroups of the points. Let M 00 � M 0 be theunion of all strata whose dimension is less than dimM 0. When the deformation parameterapproahes its disriminantal value, it is easy to de�ne geometrially a relative vanishing8
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where the vetor a or its multiple are written in the basis ej>0 and the Aj are the linearreetions de�ned by the roots ej and having the eigenvalues �1; !; i. This yields the resultrequired. �Remarks 3.1 a) The eigenvalue of the Piard-Lefshetz operator orresponding to a mul-tiple Morse degeneration is �1. The eigenvalues of all the other operators in the X9jZ4 andX9=Z6 singularities are ��. They are � in the A(4)3 and C(2;3)4 ases. And �nally, for theB(6;3)2 singularity, the operators of orders 3 and 6 have the eigenvalues � and �� respetively.This follows from easy quasi-homogeneous onsiderations similar to those in [11, 12, 13℄.b) The standard order of vanishing yles in the distinguished set used to onstrutthe X9=Z6 diagram is e2; e00; e1; e3. As usual, for the tree diagram the order may be donearbitrary.) The three rystallographi groups orresponding to the three symmetri X9 singular-ities with the Weyl groups in the notations are representations of the orresponding gener-alised braid groups.We should also notie that the fat that the equivariant monodromies of Theorem 3.1are at most fator-groups of the rystallographi groups in question already follows from thedesription of the disriminants of our singularities and the information about the ordersof the Piard-Lefshetz operators. Indeed, onsider �rst the four string diagrams of Figure3 omitting their egde orientations and all the labellings. Applying Zariski's method toalulate the fundamental groups of the omplements to our disriminants, we see thatthe redued diagrams are exatly the diagrams of relations between the generators of thesegroups. If we now restore the orders of the verties then we ome to the diagrammatipresentations of the orresponding rystallographi groups obtained in [15℄. To obtain similaroinidene with [15℄ for X9=Z6, we use the interpretation of the triple intersetion of thedisriminant: the lower right triangle of the Dynkin diagram orresponds to the irularrelations ab = ba = ab in the fundamental group (see [8, 15℄). Finally, the additionalrelations in [15℄ are the orders of the lassial monodromy in our ases.Question 3.1 A relation between the disriminant of an interesting symmetri parabolifuntion and the orbit spae of the related rystallographi group should be investigated. Inpartiular, it would be interesting to �nd out why funtion singularities with non-isomorphidisriminants may give rise to the same rystallographi groups. At the moment, there aretwo examples of suh a dupliation: symmetri J10 singularities with the disriminants G2and C3 (see [14℄) orrespond to the same aÆne groups, [K3(6)℄ and [K8℄, as respetively thesingularities B(6;3)2 and A(4)3 of this paper.The skew-hermitian versions of the �ve aÆne reetion groups are given by the Dynkindiagrams of the two-variable symmetriX9 singularities of Figure 4. The diagrams are drawnfor � = i and � = ! for the 2-variable automorphisms of Table 1 of orders respetively 4and 3 or 6. For � = �i; !, all the numbers must be onjugated. Inside the verties are theeigenvalues of the Piard-Lefshetz operators. The empty verties orrespond to the kA1degenerations, hene all the eigenvalues for them are 1 and the Piard-Lefshetz operators10



A3

(4)

Z6X9

C4

(2,3)

Z4X9
i4/(  −1)

4
−i

i4
−i

i4
−i

i

6(ω − ω)

−ω
ω −1

ω − ω

ω −1
−ω

ω − ω
−ω

ω − ω

ω
2(ω − ω)3(ω − ω)

i4/(  −1) i4/(  −1) 3

i

4

00 −4
i

B
(6,3)

2
6

−ω

0

ω3

3(1− ω)

3(1− ω)
0

00

3−3ω

Figure 4: Dynkin diagrams of the symmetri X9 singularities in 2 variables, � = i; !.are a 7! a�ha; eie=k. The three yles forming the lower right triangle of the X9=Z6 diagramare linearly dependent.Referenes[1℄ V. I. Arnold, Normal forms of funtions near degenerate ritial points, the Weyl groupsAk, Dk, Ek and Lagrangian singularities, Funtional Analysis and its Appliations 6(1972), 254{272.[2℄ Arnold, V. I., Critial points of funtions on a manifold with boundary, the simple Liegroups Bk; Ck and F4, and singularities of evolutes, Russian Math. Surveys 33:5 (1978),99{116.[3℄ V. I. Arnold, S. M. Gusein-Zade and A. N. Varhenko, Singularities of Di�erentiablemaps, vol. I, Monographs in Mathematis 82, Birkh�auser, Boston, 1985.[4℄ V. I. Arnold, V. V. Goryunov, O. V. Lyashko and V. A. Vassiliev, Singularities I. Loaland global theory , Enylopaedia of Mathematial Sienes, vol.6, Dynamial SystemsVI, Springer Verlag, Berlin a.o., 1993.[5℄ N. Bourbaki, Groupes et alg�ebres de Lie, Chapitres IV{VI, Hermann, Paris, 1968.[6℄ E. Brieskorn, Singular elements of semi-simple algebrai groups, Ates du Congr�es In-ternational des Math�ematiiens (Nie, 1970), Tome 2, Gauthier-Villars, Paris, 1971,279{284.[7℄ M. Brou�e and G. Malle, Zyklotomishe Hekealgebren, Ast�erisque 212 (1993), 119{189.[8℄ M. Brou�e, G. Malle and R. Rouquier, Complex reetion groups, braid groups, Hekealgebras, J. reine angew. Math. 500 (1998), 127{190.[9℄ A. M. Cohen, Finite omplex reetion groups, Annales Sienti�ques de l' �Eole NormaleSup�erieure 4:9 (1976), 379{436. 11



[10℄ J. N. Damon, The unfolding and determinay theorems for subgroups of A and K,Memoirs Amer. Math. So. 50, no.306, 1984.[11℄ V. V. Goryunov, Unitary reetion groups assoiated with singularities of funtions withyli symmetry , Russian Math. Surveys 54:5 (1999), 873{893.[12℄ V. V. Goryunov, Unitary reetion groups and automorphisms of simple hypersurfaesingularities, New Developments in Singularity Theory, Kluwer Aademi Publishers(2001), 305{328.[13℄ V. V. Goryunov and C. E. Baines, Cylially equivariant funtion singularities andunitary reetion groups G(2m; 2; n); G9; G31, St. Petersburg Math. J. 11:5 (2000), 761{774.[14℄ V. V. Goryunov and S. H. Man, The omplex rystallographi groups and symmetriesof J10, Singularity Theory and its Appliations, Advaned Studies in Pure Mathematis43 (2006), Mathematial Soiety of Japan, Kinokuniya, Tokyo, 55{72.[15℄ G. Malle, Presentations for rystallographi omplex reetion groups, TransformationGroups 1 (1996), no.3, 1{19.[16℄ V. L. Popov, Disrete omplex reetion groups, Communiations of the MathematialInstitute Rijksuniversiteit Utreht 15{1982 (1982), 89 pp.[17℄ G. C. Shephard and J. A. Todd, Finite unitary reetion groups, Canad. J. Math. 6(1954), 274{304.Department of Mathematial Sienes,University of Liverpool,Liverpool L69 7ZL,United KingdomE-mail: goryunov�liv.a.uk

12


