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Abstract

Following Arnold’s and Viro’s approach to order 1 invariants of
curves on surfaces [1, 2, 3, 20], we study invariants of mappings of
oriented surfaces into Euclidean 3-space. We show that, besides the
numbers of pinch and triple points, there is exactly one integer invari-
ant of such mappings that depends only on local bifurcations of the
image. We express this invariant as an integral similar to the inte-
gral in Rokhlin’s complex orientation formula for real algebraic curves.
As for Arnold’s J* invariant [1, 2, 3], this invariant also appears in
the linking number of two legendrian lifts of the image. We discuss a
generalization of this linking number to higher dimensions.

Our study of local invariants provides new restrictions on the num-
bers of different bifurcations during sphere eversions.

In [17, 18] Vassiliev introduced the notion of a finite order invariant of
knots. Finite order invariants can be defined for mappings in more general
settings so long as the discriminant has codimension 1 in the function space.
In [1] Arnold defined three invariants of order 1 for plane curves. These
invariants have a local nature: they do not distinguish different components
of the same top strata of the discriminant. Recently Viro generalized Arnold’s
invariants to the case of curves on surfaces [19]. Viro’s generalization is based
on Rokhlin’s complex orientation formula for real algebraic curves [12, 13].

In this paper we consider mappings of oriented surfaces to Euclidean 3-
space. We study special order 1 invariants which we call local. The notion
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of locality is slightly more rigid than the one used by Arnold: we require
that the values of an invariant get the same increment once the images of
the mappings experience the same local bifurcation.

We give a complete list of integer and mod 2 local invariants of generic
mappings and of generic immersions (Sections 2 and 3). For example, we
show that, besides the numbers of pinch and triple points, there is exactly
one more integer local invariant, which we call I3, of generic mappings of
surfaces into R3. Our invariants provide new restrictions on the numbers of
bifurcations during sphere eversions (subsection 3.2).

In Section 4 we relate I3 to a local invariant [ [ which is very similar to

the integral form of Rokhlin’s complex orientation formula [14, 19, 20].

Arnold found a formula for his direct selftangency plane curve invariant
J* using linking numbers of corresponding legendrian curves [2, 3]. In Sec-
tion 5 1 I is expressed in terms of linking numbers in ST*R? of two varieties
homeomorphic to the source surface. One of the varieties is a modified legen-
drian lift of the image of a generic mapping, the second one is the ‘negative’
of the first.

In Section 6, following [2, 3] and Section 5, we introduce two linking
numbers for a generic immersed hypersurface in R". These numbers are local
invariants dual to the direct and inverse selftangencies of a hypersurface.

Section 7 contains proofs of all theorems of the previous sections.

The author is very grateful to The University of Georgia, Athens, and
to Matematisk Institut, Aarhus Universitet, the institutions where the work
was done, for their kind hospitality and support.

1 Generic degenerations

Locally, the image of a generic mapping of a fixed closed surface M to R3
is either a smooth sheet, or transversal intersection of either 2 or 3 smooth
sheets, or a Whitney umbrella (the image of (z,y) — (x,%?% zy)) (see Fig.1).
Mappings with more complicated images form a discriminant hypersurface
A in the infinite-dimensional space  of all C*® maps M — R3.

The discriminant subdivides €2 into connected components. A numerical
inwariant is a way to assign numbers to each of these components.

Moving along a generic path in (2, we watch the jumps, as we pass the



Figure 1: Local singularities of images of generic maps of surfaces into 3-
space

discriminant, of the values of an invariant. We say that our nvariant is local
if every jump is completely determined by the diffeomorphism type of the
local bifurcation of the image at the instant of crossing of the discriminant.

Remark. Arnold’s plane curve invariant St [1, 2, 3] is not local in our sense
since the coorientation of the corresponding stratum of the discriminant in-
volves global information about the image.

1.1 The top strata

There are 7 types of local events on the image that take place at generic
points of A, i.e. occur along generic curves in  [11, 10, 8] (Figs. 2 and 3):

(E) elliptic tangency of two smooth sheets;
(H) hyperbolic tangency of two smooth sheets;

(T') (for ‘triple’), tangency of the line of intersection of two smooth sheets
to a third smooth sheet (all the three sheets are pairwise transversal);

(Q) (for ‘quadruple’), four smooth sheets intersecting at the same point;
(C) (for ‘cup’), a smooth sheet passes through a pinch point;

(B) birth of a bubble with two pinch points joined by an interval of selfin-
tersection;

(K) (for ‘cones’ in Russian), the hyperbolic version of B.



A local coordinate form for B and K is (z,y) — (z,y% y(z? £ 9> — X))
(the real parameter \ increases from the left to the right in Fig.3 being zero
in the middle).

The seven bifurcations define seven top (i.e. top-dimensional) strata of
the discriminant.
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Figure 2: Local bifurcations of images in generic 1-parameter families of
mappings involving only smooth sheets

1.2 Coorientation of the strata

In order to assign a jump of an invariant to a stratum, we will need to coorient
the stratum (unless we work with a Z,-invariant).
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Figure 3: Local bifurcations of images in generic 1-parameter families of
mappings involving pinch points

There is a natural way to coorient 5 of our 7 strata. This corresponds to
moving from the left to the right in Figs. 2 and 3. Namely, we say that a
passing through the stratum s positive if the passing gives birth to something
new on a generic image:

e I/ a new circle of selfintersection;
e T, two new triple points;

e (, one new triple point;

e B, K, two new pinch points.

In all these cases, except K, this is equivalent to the appearence of a new
2-cycle on a generic image.

In the two remaining cases, H and (), the similar procedure fails: the
initial and final pictures of Fig.2 in each of the two series are locally diffeo-
morphic.



1.3 Refinement for oriented surfaces

From now on we assume the source surface M oriented. This allows us to
refine the stratification of the discriminant.

Let us fix orientations of M and R®. We obtain a canonical coorientation
of the image at immersive points requiring that the frame (normal of the
coorientation, the image of a positive frame of M) is a positive frame in R3.

We now add the induced coorientations of the sheets in all the 7 bifurca-
tions of the previous subsection. This splits them in 20 subcases listed below
(see Fig.4 for 15 of them). Considering a 2-sphere that consists of pieces of
several smooth sheets (with their own coorientations), we call a piece posi-
tive if it has the outer coorientation. The outer coorientation is also called
positive, the inner one is called negative.

We split the strata:

e £, T.Qin E/,j=0,1,2, 77,5 =0,1,2,3, Q’,j = 2,3,4. Here j is the
number of positive pieces of the appearing sphere (there is the vanishing
tetrahedron in the @Q-cases which has 4 — j positive pieces);

e Hin H' and H™: the sheets, at the tangency point, have coinciding,
respectively opposite, coorientations;

e Cin C*% o, = 4, —: for the appearing cup-shaped 2-sphere, o and
B are the signs of the coorientations of the lateral (having the pinch
point) and bottom pieces respectively;

e B in Bt and B™: the superscript is the coorientation of the appearing
sphere;

e K in K™ and K~: the index is the coorientation of the local ‘tubular’
part before the bifurcation.

We continue with the coorientation of the discriminant.

Q. We coorient the Q* and @3 strata in the direction of increase of the
number of positive faces of the local tetrahedron (Fig.5). But there is still
no local (in the sense introduced above) way to distinguish between the two
sides of the (? stratum.

H. To coorient H~ we consider the two points of M at which we get tangency
for the degenerate mapping. We say that the crossing of the stratum is
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Figure 4: Local images of oriented surfaces to the positive sides of the top
strata of the discriminant

positive if the relative motion of the images of the two points occurs opposite
to the coorientations of the sheets (Fig.5).
Once again, there is no way to coorient H* by only local means.

In what follows the top strata of the discriminant are always taken with
the coorientations introduced in this section. (2 and H+ are not cooriented.
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Figure 5: Positive directions of bifurcations Q*, Q* and H~

2 Lists of local invariants

2.1 Local invariants in terms of jumps along the top
strata

Given an invariant I of generic mappings, we can enlarge its domain Q \ A
to include generic points f; of a cooriented top stratum S C A C € [17, 18].
For this we take two points, f, and f_, close to f, in €2, to the positive and
negative sides of S respectively. We set I(f,) = I(fy) — I(f.). If I is a
local invariant, the value obtained does not depend on a particular choice of
generic f, € S.

Definition 2.1 s(I) = I(f,) is the jump of the local invariant I along the
stratum S.

To assign a jump to a local Z,-invariant we do not need any coorientation
of S.



On the other hand, a local invariant I on Q \ A is defined, up to an
additive constant, by its jumps along the 20 strata of the discriminant. To
calculate the value I(f) in this situation, we need to:

(1) choose the value of I on a distinguished generic mapping fy;
(2) join fy and f by a generic path 7 in ;

(3) calculate the indices of intersection yN S of v with each of the 20 strata
S5

(8) set () = S0 N S)s(1) + 1(fo).

Of course, this must be independent of the choice of 7. Since €2 is contractible,
the independence is equivalent to vanishing of the increment of I (counted
in the above way) along any small loop in §2 around the set of nongeneric
points of A. This set has codimension 2 in €.

To shorten the notation, we will write a local invariant as a linear combi-
nation of the strata with the coefficients equal to the jumps. For the moment
the invariants are considered up to the additive constants.

Checking of the independence condition (which is a rather routine study
of generic 2-parameter families of mappings) provides:

Theorem 2.2 The space of integer local invariants of smooth mappings of an
oriented surface into R3 is 3-dimensional. The following are basic invariants:

(1) I, =2T + C;
(2) I, =B+ K;
(8) 5i=E*-E+H +T+C*+Ct~+B"+ K",
Here T, C, B, K are the sums of all the corresponding 4 or 2 substrata.

Of course, the best choice of the additive constants for the first two invari-
ants is the vanishing on an embedding of the surface. Then I; is the number
of triple points and I, is the number of pairs of pinch points of the image of
a mapping. We fix this normalizations of these two invariants for the rest of
the paper. We will make comments on the constant for /3 in subsection 4.4.



Definition 2.3 Tangency of two smooth sheets of the image that have co-
inciding (resp. opposite) coorientations is called direct (resp. inverse) self-
tangency.

Difference of values of I3 (more precisely, of 213 — I;) on two mappings is a
modification of the number of opposite selftangencies in a generic homotopy
between these mappings.

Theorem 2.4 The space of mod 2 local invariants of smooth mappings of an
oriented surface into R? is 4-dimensional. Basic invariants are the ones of
Theorem 2.2 and

(4) I, = E'+ Ht + C+— + C~+.

In a way similar to I3, I, measures a modified mod 2 number of direct
selftangencies in a generic homotopy between two mappings.
The proof of both theorems is given in subsection 7.1.

2.2 mod 2 winding numbers

An oriented circle immersed into a plane has a winding number. By one of
many equivalent definitions, this is the number of rotations of the tangent
vector when its point of application runs along the circle once. A circle
immersed into a 2-sphere has a well-defined mod 2 winding number: to obtain
a plane, we puncture the sphere at any point not on the circle and take the
parity of the plane winding number. This parity does not depend on the
choice of the puncture and, for a generic curve, is opposite to the parity of
the number of its double points.

Now take a generic mapping of a surface into R®. Consider the inverse
image D of the set of singular points of the image. This is a collection of
circles immersed into the source surface.

Proposition 2.5 For generic mappings of a sphere, the mod 2 invariant I, +
I, is the parity wy(D) of the total winding number of D.

Proof. wy(D) is the mod 2 sum of the number of connected components and
the number of double points of D. The parity of the number of double points
of D is the same as the parity of the number of triple points of the mapping.
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The latter changes only across the stratum C'. The number of connected
components mod 2 of D changes only across B and K. Since both wy(D)
and I, + I, vanish on embeddings, the claim follows.

3 Immersions

3.1 Local invariants of immersions

Let Q; C Q be the space of C°®° immersions of an oriented surface to R3.
Restriction of local invariants from € to €2; defines local invariants of im-
mersions. Almost always this exhausts all local invariants of immersions (as
before, the invariants are considered modulo additive constants):

Theorem 3.1 The space of integer local invariants of immersions of an ori-
ented surface to R? is two-dimensional. Basic invariants are:

Lyjy=T and I;=E’—E°+H".

With the normalization I;/,(embedding) = 0, I;5(f) is the number of
pairs of triple points of the image of f.
There is something extra over Zs:

Theorem 3.2 The space of mod2 local invariants of immersions of a 2-
sphere to 3-space is four-dimensional. In addition to the basic invariants of
Theorem 3.1 there are two more:

I,=E'+H" and I,=Q.

Here I, is the restriction of the invariant of Theorem 2.4 and will ap-
pear for any oriented surface, not only for the sphere. The reason why we
formulate the theorem for spheres only is as follows.

Considering bifurcations in all possible generic 2-parameter families of
immersions of a surface (as in proofs of the first three theorems) it is easy
to show that a small loop in €2; around the set of nongeneric points of the
discriminant intersects the stratum () an even number of times. But €);
has nontrivial fundamental group. A well-defined invariant should have zero
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increments along all elements of 71(€;). I do not know generators of this
fundamental group in the case of an arbitrary surface. But for the 2-sphere,
7, of the space of marked immersions (i.e. the ones that send a distinguished
ordered 2-frame of the tangent space to S? at a distinguished point to a
distinguished ordered 2-frame at a distinguished point of R?; for our needs it
is enough to consider only marked immersions) is freely generated by a loop
[15] described in [9]. This loop intersects @) twice.

It would be very interesting to work out whether I, survives the m(€2;)-
test for surfaces of positive genus.

Of course, there are no such difficulties with 7; for the restrictions of the
local invariants from 2, which is contractible.

Proofs of Theorems 3.1 and 3.2 are given in subsection 7.2.

3.2 Sphere eversions

Definition 3.3 An eversion of a sphere is a turning of a positive sphere
inside out in R? by a generic regular (i.e. with no pinch points) homotopy.

Eversions of surfaces are possible due to the classical result of Smale
(15, 16].

Let N(S) be the number of crossings of the stratum S (the signs of the
crossings of a cooriented stratum are respected) during a sphere eversion.

Corollary 3.4 The numbers of bifurcations during a generic sphere eversion
are subject to the following relations:

N(T)=0, N(E*)-N(E°)+N(H )=-1, N(E)+N(H")=0mod2

Proof. Consider a generic path in the space of mappings of S? into R? along
which a positive sphere becomes a negative one via the birth of a negative
bubble and death of a positive one (Fig.6). The right-hand sides of the first
three relations are the increments of the local invariants of Theorems 2.2 and
2.4 along this path.

Another way to prove the Corollary, not using any particular path, follows
from the description of an integral invariant of the next section.

Remarks. a) There is no suprise in the restriction N(7') = 0: having gener-
ated triple points, we must kill them to complete an eversion.
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Figure 6: Nonregular homotopy turning a sphere inside out

b) One more restriction, N(Q) = 1mod 2, was proved by Max and Ban-
choff by explicit presentation of an eversion with one quadruple point [9)].
This implies, by the way, that, during an eversion, there are at least two
positive crossings of T' to create the vertices of the tetrahedron vanishing on
. The basic loop in €);, mentioned in the comments after Theorem 3.2, is a
composition of the eversion of [9] with its ‘mirror image’.

4 Integral invariant

We introduce now an invariant of generic mappings from oriented surfaces to
3-space that is very similar to the integral in Rokhlin’s complex orientation
formula for real algebraic plane curves [12, 13, 14, 19]. This invariant turns
out to be local, very closely related to I3.

4.1 Degrees

Let Imf be the image of a generic mapping of a surface
f : M — R3. Take a point u in R? not on the image. Consider a small
2-sphere, with the outer coorientation, centered at u. The radial contrac-
tion of the image onto the sphere defines a through mapping from M to the
sphere. We denote by deg(u) the degree of this mapping.

Imf subdivides the ambient 3-space into a finite number of connected
components D. deg(u) is constant on each of them. We denote the corre-
sponding value by deg(D).

We define an integral of function deg against Euler charactestics x setting
119, 20]:

/RS\Imf deg(u)dx(u) = % deg(D)x(D),

13



where D runs through all the connected components of R3 \ Imjf.

There are 8 (resp. 3) local connected components of the complement to
the image around a triple point ¢ (resp. a pinch point p). We set the degrees
deg(t) and deg(p) to be the arithmetical means of the corresponding 8 or
3 degrees. deg(t) is a semi-integer that also coincides with the arithmetical
mean of degrees of any of four pairs of the ‘opposite’ local components. deg(p)
is the degree of the ‘largest’ of the three components around p (Fig.7).

ol :
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Figure 7: A triple point of degree d —3 and a pinch point of degree d. In both
cases d is the degree of the distinguished component of R®\ I'mage

4.2 The invariant

We set
I = g 2e000) ~ Seg(t) ~ 5 3 degto),

where ¢ and p run through all the triple and pinch points of the image.
Example 4.1 The value of 1 [ona standard immersion of a surface of genus
g (Fig.8), with the outer coorientation, is 1 — g.
Theorem 4.2 | i 15 a local 1nvariant. Up to an additive constant,
If =2l -1, — 1,
Thus all the three local integer invariants of Theorem 2.2 may be defined

only in terms of geometry of the image of the mapping f. There is no need
to choose any homotopy in {2 between the distinguished mapping and f.
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Figure 8: Standard immersion of genus 3 surface

The assertion of Theorem 4.2 is parallel to the assertion of Viro’s Corol-
lary 3.2.B in [20] for the invariant J~ of plane curves.

The proof of Theorem 4.2 consists in the comparison of the jumps of
I, and the above combination of the local invariants. It will be given in

subsection 7.3.

Remark. The definition of I Ii is similar to the formula for calculating the
winding number w of a generic plane curve [20]:

w =) deg(D) - deg(d),

with D and d running through all the connected components of the comple-
ment to the curve and all the double points, deg(D) defined in the obvious
way, and deg(d) being the arithmetical mean of the four numbers.

4.3 Smoothings of images
The intergal invariant [/ i has another description, in terms of a smoothed

image.

Lemma 4.3 There is a canonical way to smooth singularities of the image
of a generic mapping of an oriented surface to 3-space. This smoothing is
given by local pictures of Fig.9.

Let Im J be the smoothed image of a generic map f. As in subsection 4.1,
for each point u of R3 \ Imf, we define deg(u).

Theorem 4.4

I[(1) = foumy E90X(0) = 2 deg(p).
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Figure 9: Local smoothings of the image of a generic map

Here p runs through all the pinch points of Imf.

The assertion of Theorem 4.4 is parallel to the assertion of Viro’s Theorem
3.1.A in [20] for the invariant J~ of plane curves. The proof of Theorem 4.4
is given in subsection 7.4.

4.4 Connected summations

Let us choose a system of constants a(g) for the system of local invariants
1 [ +a(g) on the spaces of mappings of surfaces of genus g to R?, in order to

get a good invariant on the union of all these spaces. As in [1], for the notion
of ”goodness” let us take additivity with respect to the connected summation.
It turns out that we have to distinguish two types of such summation. The
sets of the constants a(g) for the two types are distinct.

A connected sum of two surfaces M; and M,, separated by a plane, in R3
is defined as shown in Fig.10: we cut a small disc out from the ‘exterior’ part
of each of the surfaces and join the surfaces by a thin cylinder circle xinterval
embedded in R?*\ (M; U M,). If we want to save the orientations of the
summands, there is an obvious restriction on M; and M,. Coherently with
the coorientations of the summands, the connecting cylinder must have either
the outer or inner coorientation. We call these two options the positive and
negative summations respectively.
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Figure 10: Connected summation of surfaces and its two types: positive and
negative

Theorem 4.5 The invariant If—|—ag+g—1, where « is an arbitrary number,
15 additive with respect to the positive connected summation. The invariant
If + Bg — g+ 1, where B is an arbitrary number, is additive with respect to
the negative connected summation.

The Theorem easily follows from the summations of the standard surfaces
(Fig.8). ao and (3 are values of the invariants on the standard tori, with the
outer and inner coorientations respectively.

Remark. The invariants I; and I, normalized to vanish on embeddings are
obviously additive under both connected summations. For I3 to be positively
(resp. negatively) additive we set its value on the standard surface with the
outer (resp. inner) coorientation to be (ag+¢g—1)/2 (resp. (Bg—g+1)/2).

The best behaviour of 1 [ is under twisted summation, when we use a
tube with two pinch points as a connecting bridge (Fig.11). [ Ii is additive
with respect to such a summation. But now we need to shift I,: to make it
twisted-additive we set I}, = I, + 2.
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Figure 11: Twisted connected summation

5 Linking invariant

In [2, 3] Arnold gave an interpretation of his plane curve invariant J* in terms
of linking numbers of corresponding legendrian curves in different covers of
ST*R?. Below we introduce a similar presentation for I Ik We need there
some extra work since a generic mapping of a surface into 3-space has critical
points, while a generic plane curve does not.

5.1 Legendrian lift of a generic image

Let f be a generic mapping of an oriented surface M into oriented R?. We
are going to associate to f a subvariety L}“ of the contact variety ST*R? of
cooriented tangent 2-planes of R?. L}r will be homeomorphic to M, and the
image of L} under the projection 7 : ST*R* — R? will be the image Im f of
I

The part of L}f over nonpinch points of Imf, is the usual legendrian lift
against 7: it associates to a point a the cooriented (as in subsection 1.3) 2-
plane tangent to a sheet of Im f passing through a. This divorces transversal
selfintersections of Im f.

Over a pinch point of Imf the legendrian lift gets a hole. Namely, easy
computation shows:

Lemma 5.1 Consider a Whitney umbrella W cooriented on the complement
to its pinch point p. Consider the closure of the legendrian lift of W \ p to
ST*R3. Then the boundary of the closure is an equator of the 2-sphere Sg.
The equator consists of all covectors vanishing on the image of the differential
of a parametrization of the umbrella by plane.

18



Here S is the fibre of the bundle 7 over a point p.

To patch the hole in a canonical way, we need to recall the orientation of
the fibre induced by an orientation of R3 [4]. The induced orientation of the
fibre S? comes from the orientation of the boundary of a small 3-disc in R3.
The set of outer normals of the boundary becomes a fibre when the radius
of the ball tends to zero (vectors are identified with covectors by means of a
metric on R?).

Let v : R? — W be a parametrization of the umbrella by an oriented
plane. We patch the hole on the legendrian lift of the punctured umbrella
with a half of the fibre Sg. We chose the half so that the orientation induced
from the plane by the lift extends to the patched surface as the canonical
orientation of the fibre.

Lemma 5.2 Choose a vector v in the image of the differential of v at the
pinch point so that v is directed to the half of the umbrella with the outer
coorientation (Fig.12). Then the patching hemi-sphere is the set of covectors
nonpositive on v.

Figure 12: Covectors added at a pinch point to patch the legendrian lift

Doing the patching for all pinch points of the image of a generic mapping
f of M, we get the subvariety L} C ST*R?.

5.2 Intersection with the 3-chain

There is another way to lift Im f to ST*R?: we send a point to the negative of
the coorientation normal (cf. [2, 3]). Let us lift a punctured neighbourhood
of a pinch point is this negative way. The closure of the lift has the equator
of Lemma 5.1 as the boundary. The orientation of the boundary equator is
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easily seen to be the same as for the lift in the previous subsection. Thus, the
patches compatible with the orientations are also the same. We denote the
new lift of the image (with the old patches used) by L} (it is homeomorphic
to M as well).

Now we define the linking number of L} and L.

Let us choose a direction in R? and shift L by all possible vectors of this
direction. We get in ST*R? a 3-chain V; with the boundary L;. We orient
it as the image of R, x M, where R, is the nonnegative axis oriented from
0 to oo.

In order to bring LJT in more or less general position with respect to
Vi, we slightly shift every point of L}F in the direction of the corresponding
normal vector. Namely, a point (a,n) € ST*R3 moves to (a + en,n), for
small constant € > 0 (a is a point in 3-space, n is a (co)vector applied at a).
Let L}, be the shifted variety.

We take the canonical orientation of ST*R? by the frame (positive frame
of the base, positive frame of the fibre) [4].

Definition 5.3 The linking invariant £~(f) is the intersection number of
L}, and Vy.

Since the cohomology of R? is trivial, the definition is independent of the
chosen direction.

Example 5.4 The value of £/~ on the standard genus g surface (Fig.8) with
the outer coorientation is ¢ — 1. For the inner coorientation it is 1 — g.

It is easily seen that in regular homotopies ¢~ (f) can change only at
inverse selftangencies. In general the following holds:

Theorem 5.5 = _If + 21,

A wrong choice of the patch for the lift of an umbrella would imply
appearance of an extra term, like the sum of degrees of pinch points, in the
right hand side of this formula. Such a sum is not a local invariant.

A sketch of the proof of Theorem 5.5 is given in subsection 7.5.
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6 Higher dimensions

The constructions of linking invariants in [2, 3] and the previous section sug-
gest introduction of the following two linking numbers for generic immersed
oriented closed hypersurface M in Euclidean space of arbitrary dimension
n. These numbers count direct and inverse selftangencies in generic regular
homotopies.

As above, just changing 3 for n, M defines two legendrian subvarieties,
Lt and L™, in ST*R". There are no patches now. Choosing a direction in

R"™, we get n-chains V* and V~. As in subsection 5.2 we perturb and get
Lt.

Definition 6.1 ¢T(M) and ¢~ (M) are indices of intersection of L} with V'
and V'~ respectively.

There is a discriminant in the space of C'* immersions of a fixed hyper-
surface into R"™. The top strata correspond to tangency of a smooth sheet to
the transversal intersection of r < n other smooth sheets (any r of these r+1
sheets are in general position; for r = n ‘tangency’ means ‘passing through’)
[11].

Lemma 6.2 The invariant £+ (resp £~) can change only across the strata
of direct (resp. inverse) selftangency of two smooth sheets.

The claim is obvious from the definition.

We can locally represent the selftangency bifurcation as moving a hyper-
plane x = t, t € R, through the graph z = —y% — ... —y2 + 22 + ... + 22,
u+v = n—1. Assume the frame (z,y1,..., Yy, 21,- - -, 2,) gives the orientation
of the ambient space and z is the direction to produce the n-chains V* and
V~. Changing the parameter ¢ from negative to positive, with coorientations
of the sheets as in Fig.13, we see:

(1) in inverse selftangency bifurcation £~ has a jump +2;

(2) in direct selftangency bifurcation in even-dimensional ambient space £+
has a jump £2;

(3) in direct selftangency bifurcation in odd-dimensional ambient space £+
does not change.
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Figure 13: Jumps of local values of the linking selftangency invariants

This shows why there are two integer selftangency invariants, Arnold’s
J* [1, 2, 3], for plane curves, and only one, /=, for surfaces in 3-space. The
fact of (3) reflects existence of locally noncoorientable direct selftangency
substratum, like H*, in higher dimensions.

As in the case of plane curve invariants, we can coorient the inverse self-
tangency stratum in the direction of decrease of /= and the direct selftangency
stratum, for R®®", in the direction of increase of ¢*. For plane curves this
gives us J& up to additive constants [2, 3]. For ambient R?, the first choice
gives exactly E* + H~ — E°.

Example 6.3 On the standard (n — 1)-sphere in R", with the outer coori-
entation, /T = (—1)""! and £~ = —1. On the sphere with the inner coorien-
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tation £t = ¢~ = (—1)"".
Since the 6-sphere in R is evertible [16], we get

Corollary 6.4 During a generic eversion of a 6-sphere, the number of op-
posite selftangencies is odd.

Counting the signs of crossings of the discriminant, this number is —1.

7 Proofs

7.1 Proofs of Theorems 2.2 and 2.4 on enumeration
of local invariants of generic maps

Consider a function ¢ on the set of the top strata S of the discriminant. Let
us integrate ¢ along a generic loop v in €). For this, taking zero as the initial
sum, we follow v and, every time when it intersects a stratum S, add either
#(S) (if the intersection is done in the direction of the coorientation of the
stratum) or —¢(S) (if the intersection is done in the opposite direction).

{#(S)} is the set of jumps of a local invariant along the strata if and
only if the integral of ¢ along any generic loop is zero (then the invariant is
uniquely defined by {¢(S)} up to an additive constant). This gives a system
of linear equations on the values ¢(S).

Since () is contractible, the equations should only express vanishing of
the integrals along small loops in 2 around the set of nongeneric points of
the discriminant (the latter has codimension 2 in €2). Such a loop is realized
as a loop around the origin in the parameter space of a germ of a generic
2-parameter family of mappings from our oriented surface to R?. So we will
look through all such deformation and write out the linear system on the
jumps.

The jump along a stratum S will be denoted by s. The coorientations of
the strata are as in Sect.1. Unknowns A* and ¢?, the jumps along the non-
coorientable strata, may be nonzero only for Z,-invariants. The complete
list of the 2-parameter families, particular normal forms and bifurcation di-
agrams are provided by general machinery of the Theory of Singularities
(10, 5, 6, 7], and in what follows we do not consider any details of the classi-
fication procedure.
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7.1.1 Uni-germs

The following is the complete list of generic 2-parameter families of map-
germs (R?,0) — R? [10]:

A - z,y%, y(y> + 2° + Az + p)
By : z,y%,y(@” £y + Ay’ + p)
H, : 2y + v (v + Ay + p),y3 + Ay

The bifurcation diagrams for the two different coorientations of the sheet,
along with generic members of the families, are shown in Fig.14. Walking
counterclockwise around the origins in the parameter planes we read the
equations:

Ay 1)  bt—kt =0, 2) b —k =0

By: (3 kt—h —b =0, 4 k +h —bt=0
By (5) e24+k —b" =0, 6) eE4+kT—b"=0
H,: (1) bt+ec =t =b"=0

7.1.2 Bi-germs

Degenerate tangency of two smooth sheets

z=10 and =2+ PP+ Ay +p

provides (Fig.15):

(8) e*=h", 9) € =-h", (10) €' =h".
Interaction of a smooth sheet with an umbrella. At the pinch point, the
smooth sheet may be nontransversal either to the tangent line to the handle
or to the image of the differential. The latter case has two subcases. All this
is shown in Fig.15. The families are families of parallel translations of the
umbrella. (A, ) are the coordinates of the pinch point. We get 8 equations:

(11) R e (12) T+t =+t

(13) ct4+ce =t (14) c+ctt =140

(15) ctt el =t + € (16) ctm+el=c + el
(17) ctt=ct+ht+h (18) ¢t =c¢ +ht+h.
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Figure 14: Bifurcations in generic 2-parameter families of uni-germs
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Figure 15: Bifurcations in generic 2-parameter families of bi-germs
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7.1.3 Some 3-germs

Lemma 7.1 (20) "=t = =14

Proof. Consider the interaction of three smooth sheets in Fig.16. A and pu
are the coordinates of the vertex of the parabolic sheet. From the bifurcation
diagram we get t3 = 2. Changing the coorientations of the sheets we obtain
t2 =t =10

Figure 16: Bifurcation showing that t* = t?

Lemma 7.2 (19) ¢g=0.

Proof. Consider the interaction of an umbrella and two transversal smooth
sheets (Fig.17, parameters A and p are the coordinates of the pinch point).
Walking counterclockwise around the origin in the parameter plane we read
the equation:

crt+tl 4t -t - -ttt =0.

Thus, by the previous Lemma, ¢*> = 0. Changing the coorientations of the
smooth sheets, we get ¢* = ¢> = 0.

Remark. We have distinguished two directions at the pinch point: the tan-
gent line to the handle and the image of the differential. In the proof of
Lemma 7.2 we could take a different umbrella: with these two directions,
for A = p = 0, not separated by the smooth sheets. Similarly, in the proof
of Lemma 7.1 we could take a hyperbolic sheet instead of the elliptic one.
These changes would have no influence on the final results.
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Q7 T
Figure 17: Interaction of an umbrella and two transversal smooth sheets

There are some more generic 2-parameter families of mappings involving
only smooth sheets: quintuple point, a sheet passing through three coor-
dinate planes with tangency to one of the coordinate lines, second order
(degenerate) tangency of a smooth sheet and the line of transversal inter-
section of two others. But, it follows from the two lemmas above that these
families provide no further independent equations.

Solving the system (1-20) over Z and over Z, we get the systems of jumps
claimed in Theorems 2.2 and 2.4 respectively.

7.2 Proofs of Theorems 3.1 and 3.2 on enumeration
of local invariants of immersions

Due to the comments made after the formulation of Theorem 3.2 in Sect.3,
we have to consider only local events in generic 2-parameter families of im-
mersions. This leaves us with the twelve ‘smooth’ unknowns and the above
equations (8-10) and (20). But now we will obtain extra information from
some bifurcations that we did not need to study attentively at the end of the
previous subsection.

Lemma 7.3 (21) ¢*=¢*=q"

Proof. Fig.18 shows bifurcations of a sheet v +w = (v+ \)?+ p with respect
to the coordinate planes in the (u,v,w)-space (for A = p = 0, the sheet
passes through the origin being tangent to the v-axis). This implies ¢* = ¢*.
Changing the coorientation of, say, the curved sheet we get the other equality.
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Figure 18: Bifurcation showing that ¢* = ¢*

Since @? cannot be cooriented by local means, an integer invariant has
no jumps along the whole of the @)-stratum. Jumps of a Z,-invariant must
be the same along all three substrata of ().

The bifurcation diagram of a quintuple point (five plane passing through
one point) consists of 5 @-lines. This introduces no new equations.

The bifurcation diagram of a smooth sheet u = v®+ Av+ p with respect to
two sheets u?> = w? (for A = u = 0, the first sheet has second order tangency
with the line of intersection of the two others) is a cusp of T'. Following the
coorientations of the sheets we get either t° = 3 or ' = #>. Once again,
nothing is new.

Now Theorems 3.1 and 3.2 follow as solutions to the system (8-10), (20),
(21).

7.3 Proof of Theorem 4.2 about the integral invariant

The equality I [= 213 — I, — I, up to an additive constant is equivalent to

the equality of jumps of both sides along all the strata. So, let us compare
the jumps. We use the obvious

Lemma 7.4 Crossing a sheet against its coorientation increases by 1 the
degree of a connected component of the complement of the image.

B™, Fig.19. Here d is the degree of one of the components of the comple-
ment to the image. It determines the degrees of the other components. We
calculate the difference of values of I [on two mappings whose images differ

only inside a small ball, where we substitute the right picture of Fig.19 for
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the left one. Due to the additivity of Euler characteristics, the calculations
can be done locally [19, 20]:

1

bﬂg):«d—n+d+u+1) 5

d+d)—((d—1)+d) = 1.

Similarly, b~ (If) =-—1.

: ")
d-1 d-1
deg p; =d

Figure 19: Distribution of degrees for Bt bifurcation

C**, Fig.20. We have:
1

S(d+1) — sd =1

) = (dE1+1) = (d+ L :

2
Similarly, ci’_(lf) = +1.

All the calculated jumps coincide with the jumps of 215 — I, — I,,. Note
that jumps ¢®' and b* specify a local invariant on Q uniquely. Thus it only
remains to prove locality of I.

There are no more direct calculations needed.

Indeed, assume we need to calculate a jump of 1 i along KT, with a given
distribution of degrees for the components of R? \ Imf (the distribution is
completely defined by the degree of any of the components). We can realize
such a jump within the 2-parameter A,-family (Fig.14) with the appropriate
distribution of the degrees (Fig.21). The difference of the values of I [ on two
particular mappings is determined independently of any path connecting the
mappings in €. So, the jumps of I Ii in the A,-family along Kt and B™ are
equal (see the bifurcation diagram of A, in Fig.14). This means that the
jumps of If and 2I3 — I, — I, along K coincide.

In the similar way, jumps of Ii known by now successively determine the
following jumps of 1 I (for any possible distribution of the degrees).
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degt =d+ 1/2 degp=d+l

degt =d+ 1/2 degp=d+l

Figure 20: Distribution of degrees for C*7 bifurcations

K+

% $

B+

Figure 21: Embedding of Kt bifurcation into Ay-family
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(1) from Fig.14: k= =-1, h™ =2, e*=2, ¢€'=-2
(2) from Fig.15: #=0,5=0,1,2,3, €' =0, h"=0;
(3) from Fig.17: ¢*=¢*=¢*=0.

Thus, I i is a local invariant.

7.4 Proof of Theorem 4.4 about the smoothed form
of the integral invariant

Values of Iy and if = > deg(D)x(D) — ¥ deg(p) on embeddings coincide.
So, as in the proof of Theorem 4.2, it is sufficient to show that the jumps
of I Ii and [ I coincide along B and C*”. Fig.22, that shows smoothed B*

and C&7 transformations, gives the following jumps of T [

bt=(d—-1)-1+d-24+(d+1)-1—(d+d))—
—((d=1)-1+d-1) =1,

ct=(d-1)-14+d-0+(d+1)-2+(d+2)-1-(d+1))-
—((d-=1)-14d-14+(d+1)-2—-4d) =1,

ct=(d-1)1+d-14+(d+1)-1+(d+2)-1-(d+1))-
—~((d=1)-14d-14+@+1)-1+(d+2)-1—d) = -1.

Changing the coorientations of the sheets to the opposite ones interchanges
the signs + and — in the expressions of the degrees. This gives for I Ik

b-=-1,¢c =-1,c"~ =1. .
All the calculated jumps are the same as for 1 Ik Thus, I [= 1 Ik

7.5 Sketch of the proof of Theorem 5.5
about the linking invariant

The invariant £~ certainly has zero jumps along the strata T,Q, E', H™.
Direct computations show:

Lemma 7.5 cET)=F1, b)) =1.
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Figure 22: Bifurcations of smoothed images

As in subsection 7.3, Lemma 7.5 defines all the other jumps of /= via
2-parameter bifurcations. Thus ¢~ is local. The values of ¢, ¢t and b™, to-
gether with the initial conditions checked on standard embeddings of surfaces
of genus ¢ (subsections 4.2 and 5.2), identify the invariant £~ as —1I [+ 21,
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