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DURING DEVELOPMENT, particular sets of genes
are expressed at specific times and in specific con-

texts and the functions of gene products are deter-
mined by the context in which they are expressed. The
neurotrophin (NT) family of molecules is an interesting
set of gene products that have multiple functions at dif-
ferent stages of development and at different locations
in the nervous system. In addition to their classical
roles in neuronal differentiation and survival, NTs have
also been implicated in axon pathfinding1 and synap-
tic plasticity2. The discoveries that expression of NTs in
the brain is regulated by neuronal activity3–5 and that
NTs acutely potentiate synaptic transmission6–8, paved
the way for an expanding field of research that focuses
on the role of NTs in synaptic plasticity of developing
and adult brains. In this review, we discuss experimen-
tal findings in this field in the context of the NT
hypothesis for synaptic plasticity.

The neurotrophin hypothesis

The NT hypothesis proposes that repetitive neuronal
activity enhances the expression, secretion and/or
actions of NTs at the synapse to modify synaptic trans-
mission and connectivity (Fig. 1), and thus provides a
connection between neuronal activity and synaptic
plasticity. NTs can play either an instructive or permis-
sive role in activity-dependent synaptic modification of
developing and adult brains. In the instructive role,
modification is a consequence of NTs acting at the
synapse to directly modify presynaptic transmitter
release, postsynaptic sensitivity or synaptic morphol-
ogy, thus leading to a persistent synaptic modification.
In the permissive role, modification is induced by other
factors that are associated with neuronal activity,
whereas NTs carry out housekeeping functions that are
necessary for the modification of the synapse. 

According to the NT hypothesis, NTs can be
secreted locally or from the entire neuron, pre- or
postsynaptically, and can act in an autocrine or
paracrine fashion. In general, observations support a
model in which NTs are secreted locally from the den-
drites and act retrogradely at presynaptic terminals to

induce long-lasting modifications. Different types of
neuronal activity, such as correlated spiking, theta
burst and tetanic activity are known to induce persis-
tent synaptic modifications. The nature and the time
course of the modifications that are induced by differ-
ent activities might vary and NTs could be involved at
different stages or aspects of synaptic changes. 

Neuronal activity regulates neurotrophin
expression and secretion

It is well known that mRNAs encoding various NTs
and their respective trk receptors are selectively
expressed in different regions of the brain9. The
notion that the expression of these proteins is linked
to activity-dependent plasticity was prompted by the
finding that transcription of NT genes is regulated by
neuronal activity. For example, epileptogenic acti-
vation of glutamatergic synapses increased the expres-
sion of mRNAs encoding nerve growth factor (NGF)
and brain-derived neurotrophic factor (BDNF) in slices
of rat hippocampus3–5, and increasing synaptic activity
by reducing AMPA receptor inactivation with
ampakines induced a transient elevation in mRNA lev-
els encoding BDNF and trkB in the hippocampus and
entorhinal cortex10. Conversely, reduction of electrical
activity by blockade of glutamate receptors or stimu-
lation of the GABAergic system reduced mRNA levels
encoding BDNF and NGF in the hippocampus11. These
studies demonstrate that an increase or decrease 
of neuronal activity can enhance or reduce NT 
expression. Consistent with these observations, 
light-induced physiological activity enhanced the
expression of BDNF mRNA in the visual cortex12

and, in the peripheral system, expression of NT-4 in
skeletal muscle was also elevated by electrical activity13. 

In hippocampal slices, or cultures overexpressing
NGF, depolarization with high KCl or glutamate
elicited NGF secretion14. Similarly, in neuronal cell
lines or cultured hippocampal neurons overexpressing
BDNF, membrane depolarization in response to KCl
induced a Ca21-dependent release of BDNF (Ref. 15).
Experiments using overexpression of mRNAs for the
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precursor proteins pro-BDNF and pro-NGF in cultured
neurons showed that NGF is constitutively secreted
and BDNF remains in the cytoplasm under resting con-
ditions. However, depolarization triggered the release
of BDNF but not NGF, suggesting that whereas the
secretion of NGF is constitutive, the secretion of BDNF
is activity-dependent16. Together, these observations
suggest that, in systems that express high levels of NTs,
NT release can be elicited by robust neuronal depolar-
ization. In addition, studies using the BDNF scavenger
protein trkB-IgG to deplete extracellular NT, have also
shown that BDNF secretion occurs under conditions
that induce long-term potentiation (LTP) in hippo-
campal slices17–19, suggesting a causal link between NT
secretion and activity-dependent synaptic plasticity. It
is noteworthy that expression of NT-3 or NT-4 does not
seem to be modulated by neuronal activity. 

Whether NT secretion can be triggered by synaptic
activity has been examined at developing neuromuscu-
lar junctions (NMJs) in Xenopus nerve–muscle cultures.
In cultures overexpressing NT-4, a brief tetanus deliv-
ered to the presynaptic neuron induced a potentiation
of transmitter release only when the postsynaptic
myocyte was overexpressing NT-4. This effect was abol-
ished by trkB-IgG, suggesting that the potentiation was
mediated by postsynaptically released NT-4 that, in
turn, bound to presynaptic trkB receptors13. In addition,
constitutive NT-4 secretion from myocytes overexpress-
ing NT-4 also elevated the frequency of spontaneous
transmitter release from presynaptic nerve terminals,
suggesting that the target-derived NT-4 regulated presy-
naptic function in a trophic manner13. Activity-depend-
ent secretion of endogenous NT-3 from the myocyte
was also required for maintaining the quantal size of
synaptic currents in these cultures20. Furthermore,

chronic depolarization or repetitive electrical stimula-
tion of Xenopus cultures elevated endogenous NT-3
mRNA production in myocytes, and conditioned
medium containing secreted factors increased the 
frequency of spontaneous transmitter release21.
Constitutive secretion of NTs at synapses might be trig-
gered by subthreshold depolarization (in the absence of
action potentials) and could, therefore, also be activity-
dependent. Taken together, these observations support
a model in which NTs secreted from the postsynaptic
cell in response to physiological activity ‘instruct’ the
presynaptic terminal to increase transmitter release. 

In central synapses, experiments carried out under
pathological conditions have also been revealing.
Increased expression of BDNF mRNA induced by
epileptogenic activity3,5 is accompanied by BDNF
release: kindling increased phosphorylation of trkB
receptors in hippocampal mossy fibers22, and kindling
epileptogenesis was abolished by sequestering BDNF
using trkB-IgG (Ref. 23). Thus, kindling induces BDNF
secretion, which could in turn result in the develop-
ment of hyper-excitability. In this case, whether BDNF
is secreted by the pre- or postsynaptic cell is unclear.
Secretion of NTs is also subjected to positive feedback
regulation, in which NTs can trigger NT secretion in
the absence of other stimuli. Hippocampal neurons
overexpressing NTs secreted BDNF in response to NT-3
or NT-4 (but not to NGF), an effect mediated by trk
receptors24. Similar effects were found in PC12 cells
overexpressing different NTs, although secretion
appeared to be mediated by the low-affinity receptor
p75 (Ref. 25). These studies have shown that NTs can
be released in response to stimuli other than electrical
activity. Together with NT secretion elicited by neur-
onal activity, this positive feedback might enhance NT
effects at the synapse by acting in an autocrine man-
ner. It remains to be determined whether NT-induced
NT release operates under physiological conditions. 

In summary, the evidence so far strongly supports
the notion that expression and secretion of BDNF and
NGF are upregulated by electrical activity (Fig. 2a), but
also raises further questions. In particular, the precise
patterns of physiological activity that regulate NT
expression and secretion need to be determined. Is
postsynaptic spiking required to elicit NT secretion?
Can spontaneous transmitter release (independent of
action potentials) be effective in triggering postsynap-
tic NT secretion? What cellular mechanisms link elec-
trical activity, NT expression and NT secretion? Are
the expression and plasmalemma-insertion of trk
receptors also regulated by activity? 

Pre- and postsynaptic secretion of neurotrophins

An important question concerning the function of
NTs in synaptic plasticity is whether they are released
from pre- or postsynaptic cells. Neurotrophins could be
transported anterogradely from the soma to presynaptic
terminals, released as a consequence of neuronal spiking,
and received by the postsynaptic neuron. Conversely,
neuronal or synaptic activity could lead to secretion of
NTs from dendrites, and the secreted NTs might act as
retrograde factors on the presynaptic neuron. Evidence
now exists to support both pre- and postsynaptic secre-
tion of NTs. Presynaptic secretion is suggested by the
finding that exogenous NT-3 injected into the retina is
internalized by the retinal ganglion cells, anterogradely
transported to and released from axonal terminals and
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Fig. 1. The neurotrophin hypothesis for plasticity of synaptic trans-
mission. Neuronal activity regulates neurotrophins (NTs) at three differ-
ent levels: synthesis, secretion and signaling. Synaptic transmission and
connectivity are modified as a consequence of specific changes in the
pre- and postsynaptic neurons. There is experimental evidence to sup-
port the existence of all three levels of regulation (see text for details).
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then taken up by second-order neur-
ons in the visual pathway26. In the
hippocampus, BDNF mRNA was
found in the granule layer of the
dentate gyrus, and the mossy fibers
displayed striking BDNF immunore-
activity, suggesting that anterograde
transport of the protein had
occurred27,28. Furthermore, the level
of BDNF in mossy fibers was
increased following kindling28 and
electroconvulsive seizures29, and
epileptogenic activity-induced trkB
receptor activation in the CA3
region22, suggesting that activity-
induced BDNF secretion from mossy
fiber terminals had occurred.
Anterograde transport and presyn-
aptic accumulation of BDNF in cor-
tical neurons has also been sug-
gested by anatomical studies of rat
neostriatum30. 

Studies of Xenopus nerve–muscle
cultures have provided strong 
evidence for postsynaptic NT 
secretion. For example, activity-
induced synaptic potentiation in
nerve–muscle pairs was found only
in those pairs in which the post-
synaptic muscle, but not the pre-
synaptic neuron, overexpressed NT-4 (Ref. 13).
Observations on the trophic function of endogenous
NT-3 in this culture system20,21 are also consistent with
postsynaptic secretion of NT-3. Furthermore, the
somatodendritic (as oppose to axonal) localization of
BDNF in hippocampal cultured neurons and depolari-
zation-induced secretion of this NT (Ref. 15) suggest
that BDNF might be postsynaptically secreted by hippo-
campal neurons. 

At the NMJ, electrical activity increases the expres-
sion and secretion of NTs at the postsynaptic cell and
NT actions are exerted primarily at the presynaptic ter-
minal, supporting a model of retrograde action. It
remains to be determined if expression and secretion
of NT at central synapses follows a uniform pattern or
if different synaptic connections and neuronal types
display particular characteristics. 

Neurotrophins modulate synaptic efficacy

For NTs to play an instructive role in activity-
dependent synaptic modification, NT secretion
should, by itself, promote synaptic modifications.
Thus, exogenous application of NTs should be suffi-
cient to elicit the effects associated with activity.
Lohof et al.8 were the first to show that exogenous NTs
can modify synaptic efficacy in Xenopus nerve–muscle
cultures. Acute treatment of these cultures with BDNF
or NT-3 increased the frequency of spontaneous quan-
tal transmitter release (without changing the quantal
size) and the amplitude of evoked postsynaptic
responses, suggesting that NTs enhanced the pre-
synaptic transmitter release. Subsequently, the acute
effects of NTs have been extensively studied in culture
and slice preparations, as well as in the intact brain
(reviewed in Refs 31–33). Studies in the central ner-
vous system have been concentrated in the visual cor-
tex and hippocampus. The main questions addressed

are whether NTs acutely modify synaptic transmission
and whether the effects are long lasting. As discussed
below, different systems show diverse responsiveness
to NTs and some discrepancies have yet to be clarified. 
Studies of cultured neurons

In cultures of hippocampal neurons, the application
of BDNF, NT-3 or NT-4 induced a rapid potentiation 
of glutamate-mediated synaptic transmission7,34–37,
whereas in cortical neurons, NT-3 has been reported to
depress GABA-ergic transmission38. Synaptic potenti-
ation lasted for at least 30 min after the removal of
exogenous BDNF (Refs 35,37) and was more pro-
nounced for connections with low initial strength,
high variability and significant paired-pulse facili-
tation34,35, all of which are characteristics of immature
synapses. In recordings of autaptic connections, BDNF
increased the frequency of miniature excitatory post-
synaptic currents (mEPSCs) but not the amplitude of
EPSCs (Ref. 39), consistent with strong (i.e. mature)
connections used in these studies, which are less sus-
ceptible to BDNF. Overall, evidence from cultured
neurons indicates that acute treatments of NTs facili-
tate excitatory, but reduce inhibitory, transmission.
These opposite actions of NTs on excitatory and
inhibitory transmission are surprising, because modu-
lation appears to occur at the level of vesicular release,
yet there is no evidence that the machinery involved in
the vesicular release of GABA or glutamate is different. 

Chronic effects on synaptic transmission appear to be
different to acute actions and require lower concen-
trations of NTs. For instance, endogenous secretion of
BDNF as a result of chronic activity in cortical cultures
decreased the postsynaptic responsiveness of gluta-
matergic neurons to excitatory inputs, whereas 
exogenous BDNF increased the responsiveness of
GABAergic interneurons40. By contrast to the rapid effects
of NTs (discussed below), the actions of chronically
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Fig. 2. Modulation of the neurotrophin cascade by activity. (a) and (b) represent different aspects of activity-depend-
ent regulation. (a) Postsynaptic expression and secretion of neurotrophins (NTs) are regulated by activity. The amount
of NT secreted (denoted by the intensity of the blue/green gradient) increases in proportion with the level of synaptic
activity. Secreted NTs, in turn, promote the potentiation of transmitter release. The size of the nerve terminal and post-
synaptic responses reflects the degree of synaptic potentiation. Blue dots at dendrites represent NT-containing granules,
the number of which increases with activity. (b) The actions of NTs at the presynaptic terminal are enhanced by presyn-
aptic spiking. This mechanism might allow small amounts of released NTs to act synergistically with presynaptic activ-
ity to enhance transmission. (c) A model integrating the various aspects of NT-induced synaptic modulation. Expression,
secretion and actions of NTs are all enhanced by activity. Active excitatory inputs to glutamatergic target neurons (E)
are potentiated (1). Inactive inputs, in addition to neighboring glutamatergic connections onto GABAergic neurons (I)
within the range of NT action, remain unaltered and inhibitory inputs are depressed (2). Presynaptic secretion of NTs
would also be compatible with these models. 
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released BDNF appear to be purely postsynaptic, 
as reflected by the modification of both AMPA and
NMDA receptor densities41. Chronic blockade of neur-
onal activity also increased membrane excitability in
glutamatergic and GABAergic neurons, an effect that
was prevented by BDNF (Ref. 42). The latter finding 
suggests that neuronal excitability is decreased by activ-
ity-dependent secretion of BDNF. In contrast to these
findings in cortical cultures, chronic application of
BDNF to cultured hippocampal neurons forming autap-
tic connections resulted in an increased amplitude of
mEPSCs and EPSCs (Ref. 39). The reason for the discrep-
ancy between the results obtained from cortical and
hippocampal neurons is unknown, although it might be
attributed to differences among the cell types or
between synapses and autapses. Therefore, chronically
released BDNF in cortical neurons instructs a postsynap-
tic modification. Although these modifications are dif-
ferent from the acute effects of NTs, these observations
are in agreement with the hypothesis that activity-
dependent NT synthesis and secretion modifies synaptic
transmission. Whether these modifications are persis-
tent remains to be investigated. 
Studies of brain slices

Do the observations of NT action at synapses in
cell culture apply to mature synapses in the adult
brain? Early studies performed in rat hippocampal
slices showed that perfusion with BDNF and NT-3
induced a striking potentiation of glutamatergic
transmission in Schaffer collateral–CA1 synapses
(SC–CA1) within minutes6,19,43. By contrast, others
have reported that basal synaptic transmission at
these connec-tions is not acutely affected by exoge-
nous NTs (Refs 18,44–47), although infusion of 
BDNF in vivo did induce long-lasting potentiation 
of perforant path–dentate gyrus connections48.
Interestingly, BDNF depresses GABAergic transmis-
sion in the CA1 region of the hippocampus44,47, an
effect that would enhance excitability as a conse-
quence of decreased inhibition. Overall, evidence
from studies of hippocampal slices favors the notion
that exogenous NTs do not affect basal glutamate-
mediated transmission, but do depress GABA-medi-
ated transmission (Fig. 2c). Recently, it was reported
that rapid application of BDNF or NT-4 to central
neurons induced a fast depolarization49 that mimics
the response induced by glutamate. This suggests the
striking possibility that NTs might act as excitatory
transmitters if secreted rapidly at the synapse. By
contrast to hippocampal slices, application of BDNF
or NGF to slices of visual cortex did produce a rapid
potentiation of excitatory synaptic transmission50,51.
Therefore, it is likely that there are cell type-specific
responses to NTs, in addition to the region-specific
expression of NTs and trk receptors in the brain. The
discrepancy between the results obtained from
hippocampal cultures and slices might be attributed
to the state of synapse maturation, a parameter that
is known to affect the susceptibility of synapses to
NTs (Refs 34,35). In summary, the available evidence
suggests, first, that NTs potentiate glutamatergic
transmission at immature hippocampal synapses and
adult cortical connections and, second, that NTs
depress GABAergic transmission. Therefore, NTs
probably have an instructive or permissive role in
synaptic modification that depends on the particular
synaptic connections and their state of maturation.

Pre- and postsynaptic modification by neurotrophins
The question of whether potentiation occurs pre- or

postsynaptically has drawn the field of LTP into a long-
lasting debate that has contributed substantially to the
understanding of central synaptic transmission52. Will
this be the case for NT-induced synaptic modification?
Currently, most available evidence suggests presynaptic
modifications following acute NT treatments. In Xenopus
NMJs, BDNF and NT-3 increased the frequency but not
the amplitude of mEPSCs (Refs 8,13,53,54). Similarly, in
hippocampal pyramidal neurons, potentiation of
evoked synaptic transmission by BDNF or NT-4 was
accompanied by an increase in the frequency but not
the amplitude of mEPSCs (Refs 35–37), a reduction in
paired-pulse facilitation6,35,37 and the coefficient of vari-
ation35,37, in addition to potentiation of NMDA receptor-
mediated EPSCs (Ref. 37). Consistent with presynaptic
modification, overexpression of dominant-negative trkB
receptors in presynaptic (but not postsynaptic) neurons
abolished the transient potentiation induced by BDNF
(Ref. 36). The BDNF-induced depression of GABAergic
synapses in hippocampal slices has also been attributed
to presynaptic modifications44. The mechanism respon-
sible for NT-induced presynaptic changes in transmitter
release is largely unknown, although a recent report
indicated that phosphorylation of synapsin I might be
involved55. It would be of interest to determine whether
changes in synapsin I phosphorylation are opposite at
glutamate versus GABA release sites.

There is little evidence to support a postsynaptic
action of BDNF. In cultures of cortical neurons, BDNF
appears to enhance the responses of NMDA but not of
AMPA receptors to locally applied agonists56. Because
glutamate-mediated synaptic transmission is carried out
mainly through AMPA receptors, it is unlikely that this
modulation contributes to the potentiation of evoked
responses by NTs. At the Xenopus neuromuscular
synapse, NT-4 secreted by the muscle cell produced an
autocrine effect, lengthening the mean burst duration of
postsynaptic acetylcholine channels resulting in a slower
decay of endplate currents13. In the latter case, the post-
synaptic effect constitutes a minor contribution to the
overall synaptic potentiation induced by NT-4 secretion.
Taken together, these data strongly support the notion
that NT-induced modification of synaptic transmission
is expressed predominantly as a change in presynaptic
transmitter release. Because the expression of LTP at
SC–CA1 hippocampal synapses is largely postsynaptic52

it should be noted that acute potentiation by NTs can-
not account for activity-induced LTP in this region. 

Target specificity of neurotrophin-induced
potentiation

Activity-dependent plasticity of synaptic transmis-
sion is determined by the phenotype of pre- and post-
synaptic neurons. In the hippocampus, the same 
pattern of stimulation that potentiates glutamatergic
transmission onto glutamatergic neurons fails to do so
when the postsynaptic neuron is GABAergic57–59. In
addition, the identity of the postsynaptic target cell in
neocortical slices determines whether a synapse under-
goes paired-pulse facilitation or depression – two forms
of short-term presynaptic plasticity60. Interestingly,
potentiation of presynaptic glutamate release by NTs
has also been shown to be specific for those connections
that impinge upon glutamatergic target neurons37, 
suggesting that retrograde modulation occurs during
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development. This potentiation was not global, but
instead was localized to terminals that contacted gluta-
matergic target neurons. Perhaps the presence of a glu-
tamatergic dendrite during synaptogenesis results in an
NT-responsive presynaptic terminal. As discussed
below, because BDNF has a permissive function in LTP
at the CA1 region of the hippocampus18,19,45,46,61,62 the
actions of NTs might provide a mechanism by which
the induction of LTP becomes target-specific (Fig. 2). 

Role of neurotrophins in LTP and LTD

Regardless of whether or not NTs affect basal synap-
tic transmission, there is solid evidence implicating
NTs in activity-induced LTP and LTD at central
synapses. For example, the induction of LTP at
SC–CA1 synapses by tetanic stimulation is impaired in
hippocampal slices from BDNF knockout mice46,61, but
can be rescued either by re-expression of BDNF in the
slice via viral infection62, or by infusion of recombi-
nant BDNF for a few hours46. These results strongly
suggest that BNDF is involved in LTP. In addition, in
normal hippocampal slices, induction of LTP by theta
burst stimulation (TBS), but not by tetanic stimu-
lation, was impaired if endogenous BDNF was
sequestered using either trkB-IgG (Refs 18,19) or anti-
bodies against BDNF (Ref. 17). BDNF was also required
for maintaining the late phase of LTP induced by
tetanus19. The differential effects of depleting BDNF
on LTP induced by different stimulation protocols
(TBS versus tetanus) suggest that different cellular
mechanisms underlie the induction and maintenance
of these two types of LTP, and that BDNF might have
a differential involvement in these mechanisms. 

Does NT play an instructive role in LTP by inducing
synaptic potentiation or a permissive role by maintain-
ing housekeeping functions that are necessary for the
induction and maintenance of LTP? Based on the effects
of NTs on synaptic efficacy, the possibility that LTP at
central synapses is due to direct synaptic action of NTs
(an instructive role) cannot be ruled out. However, in the
particular case of LTP at hippocampal CA1 synapses, the
evidence supports a permissive role for NTs. This per-
missive role is illustrated well by the finding that BDNF
pre-incubation, which had no effect on basal synaptic
transmission, facilitated the induction of LTP in young
hippocampal slices by sustaining presynaptic trans-
mitter release during high-frequency stimulation18,45.
Consistently, recent observations in BDNF knockout
mice suggested that the number of docked vesicles at
CA1 synapses might be regulated by BDNF (Ref. 63).

Electrophysiological recordings made in slices from
visual cortex have implicated both NGF and BDNF in
synaptic plasticity during the critical period for the for-
mation of ocular dominance columns (ODCs). A high
concentration of BDNF produced an acute potentiation
of basal excitatory synaptic transmission51, and low
concentrations of BDNF facilitated tetanus-induced LTP
but prevented LTD induced by low-frequency stimula-
tion50,64,65. Moreover, sequestration of BDNF using
trkB-IgG facilitated the induction of LTD, suggesting
that endogenous release of BDNF might prevent the
depression of synaptic transmission induced by low-
frequency activity. The susceptibility to LTP in the
visual cortex (Ref. 66) coincides with the critical period
of plasticity67. In a recent study, LTP during the critical
period in the visual cortex was blocked by NGF and also
by antagonists of muscarinic receptors68. After the 

critical period, LTP was restored by sequestering NGF
using trkA-IgG or by activating muscarinic receptors,
suggesting that NGF might end the critical period of
plasticity by modulating cholinergic transmission.
BDNF can also induce the maturation of GABA-medi-
ated transmission, which in turn prevents LTP in the
visual cortex69. This is consistent with the finding that
chronic BDNF increases excitatory transmission onto
GABAergic neurons in cortical cultures, shifting the bal-
ance from excitation to inhibition40. Blockade of GABAA

receptors also restores LTP after the critical period.
Therefore, it appears that both NGF and BDNF ‘cooper-
ate’ to finalize the critical period. These observations
support a permissive role (or rather, a ‘non-permissive’
role) of NTs in synaptic plasticity in the visual cortex.

The influence of visual inputs on the formation of
ODCs in the primary visual cortex during the critical
period70 has been a classical model for activity-depend-
ent modification of connectivity in the developing
nervous system. There is now substantial evidence that
NTs are involved in development of ODCs (reviewed in
Refs 32,71). One attractive hypothesis is that activity-
dependent refinement of thalamocortical projections
is caused by NT-dependent synaptic modification.
Specifically, it has been proposed that either thalamo-
cortical axons compete for limited amounts of target-
derived NTs in the visual cortex or that only active
nerve terminals are receptive to the NTs and can thus
be stabilized. It is possible that the NT-induced poten-
tiation in the visual cortex directly contributes to the
stabilization of thalamocortical connections. In such a
case, does activity in the presynaptic nerve terminal
confer the responsiveness of the synapse to NTs? There
is now evidence that the synaptic action of NTs might
be regulated by electrical activity (described below). 

Activity-dependent actions of neurotrophins

NTs were shown to increase the length and com-
plexity of the dendritic trees in cortical neurons72;
however, this effect could be abolished if spiking,
synaptic transmission, or L-type Ca21 channels were
blocked73. Similarly, the ocular dominance shift
induced by monocular deprivation can be prevented
by NGF only in the presence of neuronal activity74.
These observations suggest that NT-induced morpho-
logical changes require neuronal activity, but how
neuronal activity affects NT-dependent morphologi-
cal changes is unknown. Recent studies of the synap-
tic action of NTs showed that neuronal activity can
enhance NT-induced potentiation of synaptic trans-
mission. For example, synaptic potentiation at
Xenopus NMJs in response to the application of
exogenous BDNF is greatly facilitated by stimulation
of the presynaptic neuron53, an effect that can be
abolished by inhibition of cAMP signaling75. It
appears that presynaptic depolarization elevates the
concentration of intracellular cAMP, which in turn
facilitates the transduction of NT signaling. In retinal
ganglion cells, neuronal depolarization together with
elevation of intracellular cAMP increased the number
of trkB receptors in the plasma membrane76, a mecha-
nism that might account for the synergistic relation-
ship between NTs and activity at the synapse.
Synergism might also occur in the cytoplasmic trans-
duction cascades triggered by NTs and electrical activ-
ity. Both BDNF and synaptic activity have been
reported to activate the Ca21–calmodulin-dependent
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pathway that leads to CREB phosphorylation77,78, sug-
gesting that there is crosstalk between two separate
transduction pathways. Synergism between synaptic
activity and NT actions could also provide a mecha-
nism by which low concentrations of locally released
NTs could be sufficient to elicit a persistent modifica-
tion at the synapse, thereby facilitating an instructive
action (Fig. 2b). Furthermore, active inputs will be
selectively strengthened by endogenously released
NTs (Fig. 2c). 

Concluding remarks

Overall, experimental observations support the NT
hypothesis as described at the outset of this review.
The evidence is summarized in the model illustrated
in Fig. 2c, where: (1) synthesis and secretion of NTs are
increased by neuronal activity; (2) NTs are secreted
postsynaptically; (3) the action of NTs on presynaptic
terminals is spatially restricted; (4) active glutamater-
gic terminals impinging onto glutamate-containing
(but not GABA-containing) neurons are potentiated;
and (5) GABAergic terminals are depressed. A crucial
aspect of this model, which remains to be addressed
experimentally, is the spatial and temporal range of
action of secreted NTs. This would determine how far
the NT effect would spread, and to what extent adja-
cent synapses that have uncorrelated activity would
be affected. Furthermore, consistent with the rapid
morphogenic effects of NTs in initiating axonal and
dendritic sprouting72,79, secreted NTs might induce
changes in synaptic morphology that form an integral
part of persistent synaptic modifications. 

The ubiquitous presence of NT in the adult nervous
system9 clearly argues for multiple functional roles of
this family of proteins throughout the life of an organ-
ism. Given the diversity of synaptic organization and
distribution of NTs and trk receptors in the nervous
system, whether NT plays an instructive or permissive
role probably depends on the type of synapse, the
stage of neural development and the pattern of neu-
ronal activity. Most of our current knowledge, which
forms the basis of the NT hypothesis of synaptic plas-
ticity, is derived from studies of in vitro preparations.
A crucial test of the hypothesis will be to determine
whether the activity-dependent expression, secretion
and actions of NTs occur in vivo under physiological
conditions. 
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B O O K  R E V I E W S

Successive generations of neuroscientists
have fallen under the spell of neuronal
dendrites. It is as if the branching patterns
express an exotic cellular personality
unique to their owners, extending their
arms and beckoning with their undulating
hands and fingertips to entice the
beholder to try to follow them in their
dance to the unheard rhythms of the
neural symphony.

Such, at least, is the hold that dendrites
have exerted over the present reviewer,
and such appears to be the hold that they
have exerted over the editors and con-
tributors to this book. The editors come
to their task with impeccable credentials,
tracing their lineage from the laboratory of
Bert Sakmann to their graduate mentors
Julian Jack, Stephen Redman and Daniel
Johnston, who themselves are steeped in

the methods of Wilfrid Rall, the founder of
the biophysical and computational analysis
of dendritic function in the 1950s and
1960s. Among many who could have been
chosen, they have assembled a represen-
tative cast of authors, largely the new 
generation, which communicates a fresh
enthusiasm for the subject.

Since the 1960s it has been realized that
understanding how these highly branched
structures contribute to neuronal informa-
tion processing requires analysis at all levels
of cellular organization and function.
Dendrites, thus, constitute one of the great
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