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Abstract. Image registration matches the features of two images, by minimizing the intensity difference be-5
tween them, so that useful and complementary information can be extracted from the mapping.6
However, in real life problems, the images may be affected by the imaging environment, such as7
varying illumination and noise during the process of imaging acquisition. This may lead to the local8
intensity distortion, which makes it meaningless to minimize the intensity difference in traditional9
registration framework. To address this problem, we propose a variational model for joint image10
registration and intensity correction. Based on this model, the related greedy matching problem11
is solved by introducing a multiscale approach for joint image registration and intensity correction.12
An alternating direction method (ADM) is proposed to solve each multiscale step, and the conver-13
gence of the ADM method is proved. For the numerical implementation, a coarse-to-fine strategy14
is proposed to accelerate the numerical algorithm, and the convergence of the proposed coarse-to-15
fine strategy is proved. Several numerical tests are also performed to validate the efficiency of the16
proposed algorithm.17
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1. Introduction. Image registration is to match the features of two images by keeping20

one image (target image) unchanged and deforming the other image (floating image). By21

comparing the deformed image with the target image, one can extract useful information from22

intensity differences. This is a fundamental process for image fusion and medical analysis. For23

an overview of image registration and related joint problems, one can refer to [1,3,5–7,10,14,24

15,23,24,32] for details.25

Without loss of generality, in this paper, we mainly focus on 2D image registration, which26

is stated in the following way. Given two images T (x), D(x) : x ∈ Ω→ R and some bounded27

domain Ω ⊂ R2, the goal of image registration is to find a mapping ϕ(x) : x ∈ Ω → Ω such28

that T ◦ϕ(·) looks like D(·) as much as possible. For each x ∈ Ω, ϕ(x) can be divided into the29
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identity part x and the displacement u(x), i.e., ϕ(x) , x + u(x). Based on this assumption,30

the mono-modality image registration problem is formulated as follows:31

(1.1) min
u∈A

λS(u) + µR(u),32

where λ, µ > 0, A is some proper set, S(u) =
∫

Ω[T (x+u(x))−D(x)]2dx, R(u) is a regulariza-33

tion to produce plausible solutions. For multi-modality diffeomorphic image registration [4,26],34

S(u) =
∫

Ω(f1(T )(x+u(x))−f2(D)(x))2dx, f1, f2 are two gray transform functions. The prob-35

lem considered in this paper lies between the two types of registration problems because the36

given images appear in multi-modalities but the modelling must be done in mono-modality.37

ϕ : Ω→ Ω

mesh
folding
region

Figure 1. Physical mesh folding caused by the deformation ϕ

Although image registration has achieved enormous success, it is still a challenging task.38

There are mainly two difficulties: (I) physical mesh folding; (II) illposeness of greedy matching.39

As shown in Fig 1, physical mesh folding is a phenomenon that points from different objects40

are mixed together after transformation. We can find that the essential reason for mesh41

folding is the non-bijection of the deformation mapping. Therefore, to eliminate mesh folding,42

it is necessary to guarantee that the Jacobian determinant of the deformation is larger than43

0 for each pixel [13, 18, 19]. This is so called ‘orientation-preserving registration’. Under this44

framework, several diffeomorphic image registration models have been proposed [8,17–19,21,45

25,28,29,34,36,37]. In the pioneering work [8], Lui introduced the quasi-conformal theory to46

control the mesh folding. Following this work, several models are proposed to improve the47

quasi-conformal model. In [39], Zhang and Chen proposed a diffeomorphic image registration48

model by restricting the deformation ϕ into a set which ensures det(∇ϕ(x)) > 0 for each49

x ∈ Ω. As a supplement, Zhang and Chen [35] introduced a diffeomorphic image registration50

model by controlling the modulus of Beltrami coefficient smaller than 1. Han, Wang and51

Zhang also gave a series of 2D/3D diffeomorphic image registration models and algorithms by52

restricting u into the 2D/3D conformal set [17–19,21].53

However, these above mentioned works are all based on the assumption that no intensity54

distortion (i.e., illumination and noise) occurs during the process of imaging acquisition. For55

example, in Fig 2, locally varying illumination occurs inside the region of the floating image56

T (·) and no illumination in the target image D(·). This leads to the intensity distortion in57
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(a) T (·) (b) D(·)
Figure 2. Local varying illumination in MRI image pair

these two regions. In this case, models such as (1.1) by treating T,D as mono-modal images58

fail to register the two images. It is meaningless for latter applications, such as image fusion59

and image analysis, even if the sketch of the two objects are exactly matched as a multi-60

modal problem. Therefore, it is necessary to introduce some intensity correction steps during61

or after image registration. For this purpose, some variational models joint image registration62

and intensity correction are proposed [27,31]. By introducing the additive and multiplicative63

bias field for intensity correction simultaneously, the relationship between the true image64

D∗(x) = Dc(x) and the target image D(x) is formulated as65

D(x) = m(x)D∗(x) + s(x),66

where s(x) : x ∈ Ω → R and m(x) : x ∈ Ω → R+ are additive and multiplicative bias fields,67

respectively. Then Theljani and Chen [31] proposed a joint model for image registration and68

intensity correction:69

(1.2) min
u,m,s

λSc(u,m, s) + µR(u,m, s),70

where Sc(u,m, s) =
∫

Ω(m(x)D(x) + s(x)−T (x+u(x)))2dx and R(u,m, s) is a regularization71

on u,m and s. Viewing the solution of the variational model (1.2) as Nash game equilibrium,72

a novel numerical algorithm for joint image registration and intensity correction is also devised73

in [31]. However, the above mentioned mesh folding is not constrained (difficulty I) and the74

game solution is a ‘perturbed solution’, not a minimizer of the original variational functional.75

The other works on joint image registration and intensity correction can be found in [11,12].76

The ultimate goal for joint image registration and intensity correction is to find the77

minimizer of the cost functional Sc(u,m, s). However, (1.2) aims to find the minimizer of78

λSc(u,m, s) + µR(u,m, s). This raises a question of whether or not one can find the glob-79

al minimizer of Sc(u,m, s) on some proper space without any prior estimate for u,m, s?80

This is so called ‘greedy matching’. Concerning this problem (difficulty II), Han, Wang and81

Zhang [20, 21] gave an answer in case of m(x) ≡ 1, s(x) ≡ 0 and T,D having no bias (i.e.,82

image registration without intensity correction) by introducing a multiscale approach and83

proved the equivalence between the proposed multiscale approach and ‘greedy matching’ with84

some suitable parameters. For the general cases, to the best of our knowledge, there seems to85

have no results. Motivated by [20, 21], we aim to extend the work [20] to the case that m, s86

belong to some specific Banach spaces. For this purpose, we propose the following variational87
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model for joint diffeomorphic image registration and intensity correction:88

(1.3) min
u∈A(Ω)\Bε(Ω),m∈CΩ,s∈SV0(Ω)

J(u,m, s) := λSlc(u,m, s) + µR(u,m, s),89

where Slc(u,m, s) =
∫

Ω(m(x)+lnD(x)−ln(T (x+u(x))−s(x)))2dx and R(u,m, s) = R1(u)+90

R2(m) + R3(s), R1(u) =
∫

Ω |∇
αu(x)|2dx, R2(m) =

∫
Ω |∇m(x)|dx, R3(s) =

∫
Ω |∇s(x)|dx.91

Note that here and in what follows, we assume that two images T,D map Ω onto the interval92

[κ,M ] ⊂ R+ for some M > κ > 0. In addition, for the purpose of eliminating mesh folding,93

u is constrained into the set A(Ω) \ Bε(Ω), where A(Ω) and Bε(Ω) are defined by94

A(Ω) =

{
u = (u1, u2)T ∈ [Hα

0 (Ω)]2 :
∂u1

∂x1
=
∂u2

∂x2
,
∂u1

∂x2
= −∂u2

∂x1

}
,(1.4)95

96

and97

Bε(Ω) = {u = (u1, u2)T ∈ A(Ω) : det (∇(x + u(x))) < ε},(1.5)9899

for α > 2, small ε > 0 and Hα
0 (Ω) is fractional-order Sobelev space [16]. To control the100

intensity bias in practice, the multiplicative bias field m is constrained into the set101

CΩ = {m ∈ BV0(Ω) : K1 ≤ m ≤ K2},(1.6)102103

for some given K1, K2, and the additive bias field s is constrained into the set104

SV0(Ω) = {s ∈ BV0(Ω) : s(x) < κ− κ0 for ∀x ∈ Ω},105106

for some κ > κ0 > 0 to ensure that ln(T (x + u(x)) − s(x)) is well-defined. Here, BV0(Ω) =107

{m ∈ BV (Ω) : m(x)|x∈∂Ω = 0} and the space BV (Ω) is as defined in [30].108

Remark 1.1. By letting m(x) ≡ 1, s(x) ≡ 0, one can notice that the model (1.2) is reduced109

to (1.1), which means that the model (1.2) is much more general than the model (1.1).110

Remark 1.2. By setting m(x) = ln m̄(x) for some positive function m̄(x), then Slc(u,m, s)111

from (1.2) becomes112

(1.7) Slc(u,m, s) =

∫
Ω

(
ln
T (x + u(x))− s(x)

m̄(x)D(x)

)2

dx.113

That is, the problem from (1.3) arg inf Slc(u,m, s) is equivalent to arg inf Sc(u,m, s) in (1.2).114

By using (1.7) as the data fidelity for (1.3), it has two advantages: (i) transforming the115

multiplicative bias field into additive bias field; (ii) eliminating the positive constraint m(x) >116

0 in the definition of Sc(u,m, s). In addition, by using Slc(u,m, s) as the fidelity data, the117

final matched image for (1.3) should be calculated as Tc(·) = T (·+u(·))−s(·)
em(·) .118

Based on the model (1.3), in this paper, we propose a multiscale approach for joint image119

registration and intensity correction, which aims to find the global minimizer of Slc(u,m, s) on120

A×CΩ×SV0(Ω) for some given K1,K2 (see Section 2 for details). That is, inf
(u,m,s)∈A×CΩ×SV0(Ω)

121

Slc(u,m, s). This is so called ‘greedy problem’ for joint diffeomorphic image registration and122

intensity correction, which searches for the global minimizer of the similarity Slc(u,m, s) by123

placing the regularization into the constraint set A × CΩ × SV0(Ω). The main contributions124

of the proposed multiscale approach contain the following three aspects:125
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• Propose a novel joint model for image registration and intensity correction;126

• Address the greedy problem for joint image registration and intensity correction;127

• Eliminate the intensity inhomogeneity by removing the bias.128

The rest of this paper is organized as follows. In Section 2, we propose a multiscale129

approach for (1.3) to address the ‘greedy problem’. In Section 3, an ADM method to solve130

the joint model for each scale is discussed and the convergence is also proved under some131

suitable assumptions. Then in Section 4, we propose a coarse-to-fine strategy for the multiscale132

approach to further accelerate the algorithm. In Section 5, some applications of the proposed133

multiscale approach are performed. Finally, we conclude our work and outline some problems134

for future research in Section 6.135

2. Multiscale approach based on the model (1.3) and related greedy problem. Mesh136

folding may occur in large deformation registration. To control the mesh folding in large137

deformation registration, one can decompose the large deformation ϕ̃n into the composition138

of several small deformations ϕi(i = 0, 1, 2, · · · , n), where ϕi is the deformation induced by139

the joint model (1.3) under different scale parameters λi and εi. For example, by setting140

λi = λ0×ai, εi = ε0
2i

with a > 1, the parameter sequences {λn} and {εn} is initialized by some141

large number λ0 and positive small number ε0 (i.e, λ0 = 3000, ε0 = 0.01). In this way, the142

large diffeomorphism is achieved. Motivated by this idea, we propose the multiscale approach143

based on the model (1.3), to give an answer to the question of whether or not one can find144

the global minimizer of Slc(u,m, s) on L(Ω) = A× CΩ × SV0(Ω). The multiscale approach is145

divided into the following n steps:146

Step 0. Searching for the solution of the following variational problem:147

(2.1) (u0,m0, s0) ∈ arg min
(u,m,s)∈Lε0 (Ω)

J0(u,m, s),148

where J0(u,m, s) = λ0

∫
Ω(m(x)+lnD(x)−ln(T (x+u(x))−s(x)))2dx+µR(u,m, s), Lε0(Ω) =149

(A(Ω) \ Bε0(Ω))× CΩ × SV0(Ω) and ε0 > 0. Define ϕ̃0(x) = ϕ0(x) = x + u0(x).150

Step 1. Searching for the solution of the following variational problem:151

(u1, δm1, δs1) ∈ arg min
(u,m0+m,s0+s)∈Lε1 (Ω)

J1(u,m, s),152

where J1(u,m, s) = λ1

∫
Ω(m0(x)+m(x)+ lnD(x)− ln(T ◦ ϕ̃0(x+u(x))−s0(x)−s(x)))2dx+153

µR(u,m, s), Lε1(Ω) = (A(Ω) \ Bε1(Ω))×CΩ× SV0(Ω) and ε1 > 0. Define ϕ1(x) = x + u1(x),154

ϕ̃1(x) = ϕ̃0 ◦ϕ1(x), m1(x) = m0(x) + δm1(x) and s1(x) = s0(x) + δs1(x).155

...156

Step n. By induction, for n ≥ 1, searching for the solution of the following variational157

problem:158

(2.2) (un, δmn, δsn) ∈ arg min
(u,mn−1+m,sn−1+s)∈Lεn (Ω)

Jn(u,m, s),159
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where Jn(u,m, s) = λn
∫

Ω(mn−1(x) + m(x) + lnD(x) − ln(T ◦ ϕ̃n−1(x + u(x)) − sn−1(x) −160

s(x)))2dx+µR(u,m, s), Lεn(Ω) = (A(Ω)\Bεn(Ω))×CΩ×SV0(Ω) and εn > 0. Define ϕn(x) =161

x+un(x), ϕ̃n(x) = ϕ̃n−1 ◦ϕn(x), mn(x) = mn−1(x)+δmn(x) and sn(x) = sn−1(x)+δsn(x).162

163

Note that here the final deformation ϕ̃n(x) = ϕ0 ◦ ϕ1 ◦ · · · ◦ ϕn(x), which implies that164

the multiscale approach (2.1)-(2.2) can simulate the large deformation well even if ϕi(i =165

0, 1, · · · , n) is small deformation. In addition, there are two key parameters λn, εn in the166

multiscale approach (2.1)-(2.2). These parameters determine whether or not one can find the167

global minimizer of Slc(u,m, s) on L(Ω). In practice, λn and εn are set to be large number and168

small positive number, respectively. However, it is still not enough. In order for the multiscale169

approach (2.1)-(2.2) to solve the greedy matching problem well, we shall give more precise170

condition shortly (see Theorem 2.5). Before that, concerning the existence of the solution for171

(2.2), we have the following result.172

Theorem 2.1. Assume max
x∈Ω
|T (x)| < M < +∞, max

x∈Ω
|D(x)| < M < +∞ and 4T , {x :173

T (x) is discontinuous at x} is a zero measure set, then there exists at least one solution for174

(2.2).175

Proof. By selecting a minimizing sequence {(uk, δmk, δsk)} of the functional Jn(u, δm, δs),176

one can conclude that uk, δmk and δsk are bounded on [Hα(Ω)]2, BV0(Ω) and BV0(Ω),177

respectively, due to Jn(u, δm, δs) ≤ Jn(0, 0, 0).178

Firstly, by the compactness of Hα(Ω), there exists a subsequence of uk which are still179

labelled by k and u ∈ [Hα(Ω)]2 such that uk weakly converges to u with R1(u) ≤ lim
k→∞

180

inf R1(uk). By the compact embedding theorem (Theorem 4.58 in [9]), we know thatHα
0 (Ω) ↪→181

C1(Ω). Namely, there exists a subsequence of uk which are still labelled by k and ū ∈ [C1(Ω)]2182

such that uk converges to ū in [C1(Ω)]2. Moreover, by the uniqueness of the limitation, we183

get ū = u. That is, uk
k−→ u in [C1(Ω)]2. Therefore, we conclude u ∈ A(Ω) \ Bεn(Ω).184

Secondly, by the compactness on BV (Ω), there exists a subsequence of δmk which are still185

labelled by k and δm ∈ BV (Ω) such that δmk weakly converges to δm with186

‖δmk − δm‖L1(Ω)
k−→ 0 and

∫
Ω
∇δmk · ϕdx k−→

∫
Ω
∇δm · ϕdx, ∀ϕ ∈ C∞0 (Ω),(2.3)187

188

where the first equation in (2.3) implies mn−1 + δm ∈ CΩ and the second equation in (2.3)189

implies R2(mk)
k−→ R2(m).190

Similarly to the analysis on δmk, one can conclude that there exists a subsequence of δsk191

which are still labelled by k and δs ∈ BV (Ω) such that δsk weakly converges to δs with192

‖δsk − δs‖L1(Ω)
k−→ 0 and

∫
Ω
∇δsk · ϕdx k−→

∫
Ω
∇δs · ϕdx, ∀ϕ ∈ C∞0 (Ω),(2.4)193

194

where the first equation in (2.4) implies sn−1 + δm ∈ SV0(Ω) and the second equation in (2.4)195

implies R3(δsk)
k−→ R3(δs).196

Finally, by ‖uk − u‖[C1(Ω)]2
k−→ 0, ‖δmk − δm‖L1(Ω)

k−→ 0 and ‖δsk − δs‖L1(Ω)
k−→ 0, we197

obtain
∫

Ω(mn−1(x) + δmk(x) + lnD(x)− ln(T ◦ ϕ̃n−1(x + uk(x))− sn−1(x)− δsk(x)))2dx
k−→198
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MULTISCALE APPROACH FOR MODEL JOINT REGISTRATION AND INTENSITY CORRECTION 7∫
Ω(mn−1(x) + δm(x) + lnD(x) − ln(T ◦ ϕ̃n−1(x + u(x)) − sn−1(x) − δs(x)))2dx. Note here199

we use the fact ϕ̃n−1 ∈ [C1(Ω)]2, which implies that T ◦ ϕ̃n−1(·) is continuous except for on200

some zero measure set. Therefore, Jn(u, δm, δs) ≤ lim
k→∞

inf Jn(uk, δmk, δsk), which ensures201

the existence of solution for (2.2).202

Then recall some important lemmas in [20], which are necessary for the proof of the203

convergence of the multiscale approach (2.1)-(2.2).204

Lemma 2.2. Assume f ,g : Ω→ Ω, W(f) = f − I and I is the identity mapping, then there205

holds206

(i) If W(f) ∈ A(Ω) \ Bε1(Ω), W(g) ∈ A(Ω) \ Bε2(Ω), then W(f ◦ g) ∈ A(Ω) \ Bε1ε2(Ω).207

(ii) If W(f) ∈ A(Ω) \ Bε(Ω), then there exists g = f−1 ∈ A(Ω).208

(iii) AssumeW(g) ∈ A(Ω)\Bε(Ω), then there exists a constant C1 such that
∫

Ω f(g(x))dx ≤209

C1R1(g−1)
∫

Ω f(y)dy.210

Lemma 2.3. Assume p(x) = x + u(x) and W(q) ∈ A(Ω) \ Bε(Ω), then there exists a211

constant C2 such that R1(W(p ◦ q)) = 2(R1(W(q)) + C2R1(q−1)R1(W(p))).212

Lemma 2.4. Assume ϕ(x) = x+u(x), g(x) = ϕ−1(x) = x+v(x) and u,v ∈ A(Ω)\Bε(Ω),213

then there exists a constant C3 such that R1(u) =
∫

Ω ‖∇
αu(x)‖2dx ≤ C3R1(g)R1(W(g)).214

Based on these lemmas, we are now ready to give the result on the convergence of the215

multiscale approach (2.1)-(2.2).216

By setting m ≡ 0, s ≡ 0 and u ≡ 0 , it follows from Jn(un, δmn, δsn) ≤ Jn(0, 0, 0) in (2.2)217

that218

λnS
n
lc(un,mn, sn) + µR(un, δmn, δsn) ≤ λnSn−1

lc (un−1,mn−1, sn−1),219

where Snlc(un,mn, sn) =
∫

Ω(mn(x) + lnD(x)− ln(T ◦ ϕ̃n(x)− sn(x)))2dx and R(0, 0, 0) = 0.220

Hence, Snlc(un,mn, sn) is a decreasing sequence with lower bound, whose limitation is defined221

by222

(2.5) δ = lim
n→+∞

Snlc(un,mn, sn).223

Define224

(2.6) φ = inf
(u,m,s)∈L(Ω)

∫
Ω

(m(x) + lnD(x)− ln(T (x + u(x))− s(x)))2dx.225

By proving δ = φ under some suitable assumptions, we can give an answer to the problem of226

whether or not one can find the global minimizer of Slc(u,m, s) on a proper set L(Ω) = A(Ω)×227

CΩ×SV0(Ω). Note (1.4)-(1.6) implies A(Ω) ⊆ [Hα
0 (Ω)]2, CΩ ⊆ BV (Ω) and SV0(Ω) ⊆ BV (Ω).228

This ensures the greedy matching problem (2.6) is well regularized.229

Theorem 2.5. Let ϕn, ϕ̃n, mn and sn be induced by the multiscale approach (2.1)-(2.2), and230

assume that B = B(Ω), M and λn are three positive numbers satisfying lim
n→+∞

B4n−3M4n

λn
= 0231

and lim
n→+∞

εn = 0, where M is a positive number depending on u0, δm0, δs0, Ω, α and φ.232

Then there holds φ = δ.233
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Proof. It is obvious that δ ≥ φ. To show δ ≤ φ, we use contradiction.234

Assume δ > φ, then there exists a C1 ∈ (0, 1) such that φ < C1δ < δ. By the definition of235

φ, there exists ϕ̄(x) = x + ū(x) ∈ A(Ω), m̄ ∈ CΩ and s̄ ∈ SV0(Ω) such that236

(2.7) ‖m̄+ lnD − ln(T ◦ ϕ̄− s̄)‖2L2(Ω) < C1δ.237

Setting ϕ = ϕ̃−1
n−1 ◦ ϕ̄, m = m̄ −mn−1, s = s̄ − sn−1, by Lemma 2.2, we obtain ϕ ∈ A(Ω),238

mn−1 +m ∈ CΩ and sn−1 + s ∈ SV0(Ω). By (2.2), (2.5) and (2.7), there holds239

λn

∫
Ω

(m̃n(x) + lnD(x)− ln(T ◦ ϕ̃n(x)− s̃n(x)))2dx + µR(un, δmn, δsn)

≤λn‖m̄+ lnD − ln(T ◦ϕ− s̄)‖2L2(Ω) + µR(W(ϕ̃−1
n−1 ◦ ϕ̄), m̄−mn−1, s̄− sn−1)

≤λnC1δ + µR(W(ϕ̃−1
n−1 ◦ ϕ̄), m̄−mn−1, s̄− sn−1).

(2.8)240

Then by (2.8), we further have241

(2.9) λn(1− C1)δ + µR(un, δmn, δsn) ≤ µR(W(ϕ̃−1
n−1 ◦ ϕ̄), m̄−mn−1, s̄− sn−1)242

and243

(2.10) R(un, δmn, δsn) ≤ R(W(ϕ̃−1
n−1 ◦ ϕ̄), m̄−mn−1, s̄− sn−1).244

Recall R(u,m, s) = R1(u) + R2(m) + R3(s). Based on the inequality |a + b| ≤ |a| + |b|245

and the fact mn−1 = mn−2 + δmn−1, sn−1 = sn−2 + δsn−1, we obtain246

(2.11) R2(m̄−mn−1) ≤ R2(m̄−mn−2)+R2(δmn−1), R3(s̄−sn−1) ≤ R3(s̄−sn−2)+R3(δsn−1).247

To estimate R1(W(ϕ̃−1
n−1 ◦ ϕ̄)), by Lemma 2.3, we obtain248

(2.12) R1(W(ϕ̃−1
n−1 ◦ ϕ̄)) ≤ 2R1(W(ϕ̃−1

n−2 ◦ ϕ̄)) + 2CR1((ϕ̃−1
n−2 ◦ ϕ̄)−1)R1(W(ϕ−1

n−1)),249

where we use the formula ϕ̃−1
n−1 ◦ ϕ̄ = ϕ−1

n−1 ◦ ϕ̃
−1
n−2 ◦ ϕ̄ = ϕ−1

n−1 ◦ (ϕ̃−1
n−2 ◦ ϕ̄). Concerning the250

estimates on R1((ϕ̃−1
n−2 ◦ ϕ̄)−1) and R1(W(ϕ−1

n−1)), we have251

R1((ϕ̃−1
n−2 ◦ ϕ̄)−1) ≤2R1(x) + 2R1(W((ϕ̃−1

n−2 ◦ ϕ̄)−1))

≤c̃1R1(ϕ̃−1
n−2 ◦ ϕ̄)R1(W((ϕ̃−1

n−2 ◦ ϕ̄))) + c̃2

≤c̃3R
2
1(W(ϕ̃−1

n−2 ◦ ϕ̄)) + c̃4R1(W(ϕ̃−1
n−2 ◦ ϕ̄)) + c̃5

≤B1M2((R1(W(ϕ̃−1
n−2 ◦ ϕ̄))))

(2.13)252

and253

R1(W(ϕ−1
n−1)) ≤CR1(W(ϕn−1))R1(ϕn−1)

≤CR1(W(ϕn−1))(C̄ +R1(W(ϕn−1)))

≤B0M2(R1(W(ϕn−1))),

(2.14)254
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where for any ξ ≥ 0,255

M(ξ) =

{
1, 0 ≤ ξ ≤ 1,

ξ, ξ > 1.
256

Here the first and third inequality in (2.13) are based on the fact that f(x) = x+W(f) for any257

deformation f , and the second inequality in (2.13) is based on the conclusion R1(W(g−1)) ≤258

CR1(g)R1(W(g)) in Lemma 2.4. Hence, by (2.12), (2.13) and (2.14), we get259

(2.15) R1(W(ϕ̃−1
n−1◦ϕ̄)) ≤ 2R1(W(ϕ̃−1

n−2◦ϕ̄))+BM2(R1(W(ϕn−1)))M2(R1(W(ϕ̃−1
n−2◦ϕ̄))).260

Furthermore, by (2.10), (2.11) and (2.15), we have261

R(W(ϕ̃−1
n−1 ◦ ϕ̄), m̄−mn−1, s̄− sn−1)

≤2R(W(ϕ̃−1
n−2 ◦ ϕ̄), m̄−mn−2, s̄− sn−2) + B̄M4[R(W(ϕ̃−1

n−2 ◦ ϕ̄), m̄−mn−2, s̄− sn−2)]

≤BM4[R(W(ϕ̃−1
n−2 ◦ ϕ̄), m̄−mn−2, s̄− sn−2)]

≤ · · ·
≤B4n−3M4n [R(W(ϕ̃−1

0 ◦ ϕ̄), m̄−m0, s̄− s0)].

(2.16)

262

Define M ,M[R(W(ϕ̃−1
0 ◦ϕ̄), m̄−m0, s̄−s0)]. By (2.9) and (2.16), we then obtain 1−C1 ≤ 0263

as n→ +∞, which contradicts C1 ∈ (0, 1). Therefore, δ = φ.264

Remark 2.6. By Theorem 2.5, the multiscale approach (2.1)-(2.2) provides a solution to265

the following ‘greedy problem’:266

(2.17) inf
(u,m,s)∈L(Ω)

Slc(u,m, s).267

Here a key point is that the regularization in (2.17) is reflected on L(Ω). Otherwise, the268

trivial solution (i.e., u = 0, m = T
D , s = 0) may occur. In our method, some constraints269

(i.e., u ∈ A(Ω), m ∈ CΩ, s ∈ SV0(Ω)) are additionally added in (1.4)-(1.6). Compared with270

the greedy problem in [20] that has nothing to do with parameters, the result of the greedy271

problem (2.17) is affected by two parameters K1 and K2. In applications, a practitioner needs272

to give some estimates on the intensity of varying illumination and set suitable K1,K2 (i.e.,273

K1,K2 are suggested to be set near zero if no varying illumination in image pairs), then the274

multiscale approach (2.1)-(2.2) can work well to produce some expected solutions.275

3. Alternating direction method for (2.2). In this section, we mainly focus on the numer-276

ical implementation of the proposed multiscale approach (2.1)-(2.2) with λn and εn chosen277

by Theorem 2.5. To address the non-convexity of Slc(u,m, s), an auxiliary variable v is278

additionally introduced and (2.2) is reformulated as follows:279

(3.1) (vn,un, δmn, δsn) ∈ arg min
(v,u,mn−1+m,sn−1+s)∈Lεn (Ω)

En(v,u,m, s),280
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where En(v,u,m, s) = λn
∫

Ω(mn−1(x) +m(x) + lnD(x)− ln(T ◦ ϕ̃n−1(x + v(x))− sn−1(x)−281

s(x)))2dx + µR(u,m, s) + ΘRc(u) + 1
2θn

∫
Ω |v− u|2dx, Lεn(Ω) = L2(Ω)×Lεn(Ω), θn > 0 is a282

small number, Θ > 0 is a large number and Rc(u) =
∫

Ω(∂u1
∂x1
− ∂u2

∂x2
)2 + (∂u1

∂x2
+ ∂u2

∂x1
)2dx.283

Then setting an initialization v0
n = 0, u0

n = 0, δm0
n = 0, δs0

n = 0 for some given scale n,284

(3.1) can be split into the following four subproblems:285

vk+1
n ∈ arg min

v∈[L2(Ω)]2
En(v,ukn, δm

k
n, δs

k
n),(3.2)286

uk+1
n ∈ arg min

u∈[Hα
0 (Ω)]2

En(vk+1
n ,u, δmk

n, δs
k
n),(3.3)287

δmk+1
n = arg min

mn−1+m∈CΩ
En(vk+1

n ,uk+1
n ,m, δskn),(3.4)288

δsk+1
n = arg min

sn−1+s∈SV0(Ω)
En(vk+1

n ,uk+1
n , δmk+1

n , s),(3.5)289

290

for k = 0, 1, 2, · · · .291

Concerning the convergence of (vkn,u
k
n, δm

k
n, δs

k
n), here, we assume α > 3.5 for the technical292

demand to ensure ϕ ∈ [C2(Ω)]2. Before showing the convergence result, we give some lemmas293

for subproblems (3.2)-(3.5), which will be used in the later proof.294

Lemma 3.1. Suppose α > 3.5, T (·) is twice differentiable with ess sup
x∈Ω
|T (x)| < M̄ < +∞,295

ess sup
x∈Ω
|D(x)| < M̄ < +∞, 0 < θn < (κ−κ0)2

10M
2
(λnM̃)n

, ess sup
x∈Ω
|∇T (x)| < M̄ < +∞ and296

ess sup
x∈Ω
|∇2T (x)| < M̄ < +∞, where M̃ , M̃(Ω, α) = 2C|Ω|[K2 + ln2(M/κ)2] > 0, K =297

max{|K1|, |K2|} and C = C(Ω, α) is a positive constant (see Lemma 3.2 and Lemma 3.3298

in [16] for details). Then for subproblem (3.2), there exists a constant c > 0 such that299

(3.6) − 2λn(mn−1 +mk
n + lnD − lnT k+1

n )
∇vT ◦ ϕ̃n−1(x + vk+1

n )

T k+1
n

+
1

θn
(vk+1
n − ukn) = 0300

and301

En(vkn,u
k
n, δm

k
n, δs

k
n)− En(vk+1

n ,ukn, δm
k
n, δs

k
n) ≥ c‖vk+1

n − vkn‖2[L2(Ω)]2 .302

Here and in what follow, T k+1
n = T ◦ ϕ̃n−1(x + vk+1

n )− sn−1 − δskn.303

Proof. The first-order variation of (3.2) is304

−2λn

∫
Ω

(mn−1 +mk
n + lnD − lnT k+1

n )
∇vT ◦ ϕ̃n−1(x + vk+1

n )

T k+1
n

· z(x)dx

+
1

θn

∫
Ω

(vk+1
n − ukn) · z(x)dx = 0,

(3.7)305

where z is the test function. By the variational principle, this concludes (3.6).306
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Letting z = vkn − vk+1
n in (3.7), it yields,307

L(vkn,v
k+1
n ) =

∫
Ω

(−2λn(mn−1 + δmk
n + lnD − lnT k+1

n )
∇vT ◦ ϕ̃n−1(x + vk+1

n )

T k+1
n

+
1

θn
(vk+1
n − ukn)) · (vkn − vk+1

n )dx = 0.

308

Then we have309

En(vkn,u
k
n, δm

k
n, δs

k
n)− En(vk+1

n ,ukn, δm
k
n, δs

k
n)

=λn

∫
Ω

ln
T ◦ ϕ̃n−1(x + vk+1

n )− sn−1 − δskn
T ◦ ϕ̃n−1(x + vkn)− sn−1 − δskn

· (2mn−1 + 2δmk
n + 2 lnD − 2 lnT k+1

n

+ ln
T ◦ ϕ̃n−1(x + vk+1

n )− sn−1 − δskn
T ◦ ϕ̃n−1(x + vkn)− sn−1 − δskn

)dx +
1

2θn

∫
Ω

(vkn − vk+1
n ) · (vkn + vk+1

n − 2ukn)dx.

(3.8)

310

By using the Taylor’s formula, we get311

(3.9) ln(T ◦ ϕ̃n−1(x + vk+1
n )− sn−1 − δskn) = ln(T ◦ ϕ̃n−1(x + vkn)− sn−1 − δskn) +A+B,312

where A =
∇vT◦ϕ̃n−1(x+vkn)·(vk+1

n −vkn)

T◦ϕ̃n−1(x+vkn)−sn−1−δskn
, B = (vkn − vk+1

n )H(σ)(vkn − vk+1
n )T , and H(σ) is the313

Hessian matrix of function ln(T ◦ ϕ̃n−1(x+vkn)−sn−1−δskn) on point σ between vkn and vk+1
n .314

Hence, by (3.8) and (3.9), there holds315

En(vkn,u
k
n, δm

k
n, δs

k
n)− En(vk+1

n ,ukn, δm
k
n, δs

k
n)

≥λn
∫

Ω
(A+B)2dx + c‖vk+1

n − vkn‖2[L2(Ω)]2 + L(vkn,v
k+1
n ) ≥ c‖vk+1

n − vkn‖2[L2(Ω)]2 ,
316

where c = 1
2θn
− c0 > 0 and c0 = ‖H(σ)‖L∞(Ω) = 10M

2
(λnM̃)n

(κ−κ0)2 (see Appendix A for details).317

Lemma 3.2. For subproblem (3.3), there holds318

2µ

∫
Ω
∇αuk+1

n · ∇αwdx + 2Θ

∫
Ω

(
∂uk+1

n,1

∂x1
−
∂uk+1

n,2

∂x2

)
·

(
∂wk+1

1

∂x1
− ∂wk+1

2

∂x2

)
dx

+2Θ

∫
Ω

(
∂uk+1

n,1

∂x2
+
∂uk+1

n,2

∂x1

)
·

(
∂wk+1

1

∂x2
+
∂wk+1

2

∂x1

)
dx− 1

θn

∫
Ω

(vk+1
n − uk+1

n ) ·wdx = 0,

(3.10)

319

for any w ∈ [C∞0 (Ω)]2, and320

En(vk+1
n ,ukn, δm

k
n, δs

k
n)− En(vk+1

n ,uk+1
n , δmk

n, δs
k
n) ≥ c1‖ukn − uk+1

n ‖2[Hα
0 (Ω)]2 ,321

for some c1 > 0.322

This manuscript is for review purposes only.



12 PENG CHEN, KE CHEN, HUAN HAN AND DAOPING ZHANG

Proof. The first-order variation of (3.3) is323

2µ

∫
Ω
∇αuk+1

n · ∇αwdx + 2Θ

∫
Ω

(
∂uk+1

n,1

∂x1
−
∂uk+1

n,2

∂x2

)
·

(
∂wk+1

1

∂x1
− ∂wk+1

2

∂x2

)
dx

+2Θ

∫
Ω

(
∂uk+1

n,1

∂x2
+
∂uk+1

n,2

∂x1

)
·

(
∂wk+1

1

∂x2
+
∂wk+1

2

∂x1

)
dx− 1

θn

∫
Ω

(vk+1
n − uk+1

n ) ·wdx = 0,

324

where w = (w1, w2)T is a test function. This concludes (3.10).325

Letting w = ukn − uk+1
n , then there holds326

L̃(ukn,u
k+1
n ) =2µ

∫
Ω
∇αuk+1

n · ∇α(ukn − uk+1
n )dx +

1

θn

∫
Ω

(uk+1
n − vk+1

n ) · (ukn − uk+1
n )dx

+ 2Θ

∫
Ω

(
∂uk+1

n,1

∂x1
−
∂uk+1

n,2

∂x2

)(
∂ukn,1
∂x1

−
∂ukn,2
∂x2

)
dx

+ 2Θ

∫
Ω

(
∂uk+1

n,1

∂x2
+
∂uk+1

n,2

∂x1

)(
∂ukn,1
∂x2

+
∂ukn,2
∂x1

)
dx

− 2Θ

∫
Ω

(
∂uk+1

n,1

∂x1
−
∂uk+1

n,2

∂x2

)2

dx− 2Θ

∫
Ω

(
∂uk+1

n,1

∂x2
+
∂uk+1

n,2

∂x1

)2

dx = 0.

(3.11)

327

Therefore, based on (3.11), we obtain328

En(vk+1
n ,ukn, δm

k
n, δs

k
n)− En(vk+1

n ,uk+1
n , δmk

n, δs
k
n)329

≥µ‖∇α(ukn − uk+1
n )‖2[L2(Ω)]2 +

1

2θn
‖ukn − uk+1

n ‖2[L2(Ω)]2 + L̃(ukn,u
k+1
n )(3.12)330

≥c1‖ukn − uk+1
n ‖2[Hα

0 (Ω)]2 .331
332

Lemma 3.3. For subproblems (3.4) and (3.5), there hold333

2λn(mn−1 + δmk+1
n + lnD − lnT k+1

n )− µdiv

(
δmk+1

n

|δmk+1
n |

)
= 0,(3.13)334

2λn(mn−1 + δmk+1
n + lnD − ln T̃ k+1

n )
1

T̃ k+1
n

− µdiv

(
∇δsk+1

n

|∇δsk+1
n |

)
= 0,(3.14)335

En(vk+1
n ,uk+1

n , δmk
n, δs

k
n)− En(vk+1

n ,uk+1
n , δmk+1

n , δskn) ≥ λn‖δmk
n − δmk+1

n ‖2L2(Ω),(3.15)336
337

and338

En(vk+1
n ,uk+1

n , δmk+1
n , δskn)− En(vk+1

n ,uk+1
n , δmk+1

n , δsk+1
n ) ≥ λn‖δskn − δsk+1

n ‖2L2(Ω),(3.16)339
340

where T̃ k+1
n = T ◦ ϕ̃n−1(x + vk+1

n )− sn−1 − δsk+1
n .341
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Proof. The first-order variation of (3.4) is342

2λn

∫
Ω

(mn−1 + δmk+1
n + lnD − lnT k+1

n ) · pdx + µ

∫
Ω

∇δmk+1
n · ∇p

|∇δmk+1
n |

dx = 0,343

where p is the test function. By using the integration-by-parts formula [13], we get (3.13).344

Letting p = δmk
n − δmk+1

n , we have345

L̂ =2λn

∫
Ω

[mn−1 + δmk+1
n + lnD − lnT k+1

n ] · (δmk
n − δmk+1

n )dx

+ µ

∫
Ω

∇δmk+1
n · ∇(δmk

n − δmk+1
n )

|∇δmk+1
n |

dx = 0.
346

Then we obtain347

En(vk+1
n ,uk+1

n , δmk
n, δs

k
n)− En(vk+1

n ,uk+1
n , δmk+1

n , δskn)

≥λn‖δmk
n − δmk+1

n ‖2L2(Ω) + L̂ = λn‖δmk
n − δmk+1

n ‖2L2(Ω).
348

Further, by giving similar analysis on subproblem (3.5), we conclude (3.14) and (3.16).349

Now, based on Lemmas 3.1-3.3, we can give a convergence result of the sequence {(vkn,ukn,350

δmk
n, δs

k
n)}.351

Theorem 3.4. Suppose that the conditions in Lemmas 3.1-3.3 are satisfied. Then the se-352

quence {(vkn,ukn, δmk
n, δs

k
n)} generated by (3.2)-(3.5) converges to the solution of (3.1) when353

k → +∞.354

Proof. First, we claim that there exists (vn,un, δmn, δsn) ∈ [L2(Ω)]2 × [Hα
0 (Ω)]2 × CΩ ×355

SV0(Ω) such that356

vkn
k−→ vn in [L2(Ω)]2, ukn

k−→ un in [Hα
0 (Ω)]2,

δmk
n

k−→ δmn in CΩ, δskn
k−→ δsn in SV0(Ω).

(3.17)357

By Lemmas 3.1-3.3, we obtain that358

En(vkn,u
k
n, δm

k
n, δs

k
n)− En(vk+1

n ,uk+1
n , δmk+1

n , δsk+1
n )

≥c‖vkn − vk+1
n ‖2[L2(Ω)]2 + c1‖ukn − uk+1

n ‖2[Hα
0 (Ω)]2

+ λn‖δmk
n − δmk+1

n ‖2L2(Ω) + λn‖δskn − δsk+1
n ‖2L2(Ω).

(3.18)359

Note that En(vkn,u
k
n, δm

k
n, δs

k
n) is a decreasing sequence with a lower bound, which implies360

that the left side of (3.18) converges to zero when k → +∞. Hence, we have,361

‖vkn − vk+1
n ‖2[L2(Ω)]2

k−→ 0, ‖ukn − uk+1
n ‖2[Hα

0 (Ω)]2
k−→ 0,

‖δmk
n − δmk+1

n ‖2L2(Ω)
k−→ 0, ‖δskn − δsk+1

n ‖2L2(Ω)
k−→ 0,

(3.19)362
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as k → +∞. Then by the compactness of Banach space L2(Ω), Hα
0 (Ω), there exists (vn,un,363

δmn, δsn) ∈ [L2(Ω)]2 × [Hα
0 (Ω)]2 × L2(Ω)× L2(Ω) such that364

vkn
k−→ vn in [L2(Ω)]2, ukn

k−→ un in [Hα
0 (Ω)]2,

δmk
n

k−→ δmn in L2(Ω), δskn
k−→ δsn in L2(Ω).

365

In addition, since δmk
n is bounded in BV (Ω), there exists a subsequence of δmk

n which are366

still labelled with δmk
n and δm̄n ∈ BV0(Ω) such that367

(3.20) ‖δmk
n − δm̄n‖L1(Ω)

k−→ 0,

∫
Ω
∇δmk

n · wdx
k−→
∫

Ω
∇δm̄n · wdx,368

for any w ∈ C∞0 (Ω). By (3.19), (3.20) and the uniqueness of the limitation for mk
n, there369

holds δmn = δm̄n ∈ BV0(Ω). So we have mn−1 + δmn ∈ CΩ. Similarly, we also have370

sn−1 + δsn ∈ SV0(Ω). Therefore, we obtain the claim (3.17).371

Next, we claim that (vn,un, δmn, δsn) is a minimizer of (3.1).372

By (3.6), (3.10) and (3.17), we know that373

(3.21) − 2λn[mn−1 +mn + lnD − lnTn]
∇vT ◦ ϕ̃n−1(x + vn)

Tn
+

1

θn
(vn − un) = 0374

and375

2µ

∫
Ω
∇αun · ∇αzdx + 2Θ

∫
Ω

(
∂un,1
∂x1

− ∂un,2
∂x2

) · ( ∂z1

∂x1
− ∂z2

∂x2
)dx

+2Θ

∫
Ω

(
∂un,1
∂x2

+
∂un,2
∂x1

) · ( ∂z1

∂x2
+
∂z2

∂x1
)dx− 1

θn

∫
Ω

(vn − un) · zdx = 0,

(3.22)376

where Tn = T ◦ ϕ̃n−1(x + vn)− sn−1 − δsn. By (3.13), we also obtain that377

2λn[mn−1 + δmk+1
n + lnD − lnT k+1

n ] +H(δmk+1
n ) = 0,378

where H(mk+1
n ) = −µdiv( ∇δm

k+1
n

|∇δmk+1
n |

). This implies,379

H(δmk+1
n )

k−→ −2λn[mn−1 + δmn + lnD − lnTn] , T .380

Note that H is a monotone operator because H is the derivative of a convex functional, which381

shows382 ∫
Ω

[H(δmk+1
n )−H(ω)] · (δmk+1

n − ω)dx ≥ 0 ∀ ω ∈ BV (Ω).383

Furthermore, there holds384 ∫
Ω
H(δmk+1

n ) · δmk+1
n dx

k−→
∫

Ω
T · δmndx,385
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and386 ∫
Ω
H(ω) · δmk+1

n dx
k−→
∫

Ω
H(ω) · δmndx.387

So we get388 ∫
Ω

[T −H(ω)] · (δmn − ω)dx ≥ 0.389

Let ω = δmn + hψ for any ψ ∈ C∞0 (Ω). Then390 ∫
Ω

[T −H(δmn + hψ)] · ψdx ≤ 0.391

Besides,392 ∫
Ω
H(δmn + hψ) · ψdx k−→

∫
Ω
H(δmn) · ψdx393

as h→ 0. Therefore,394 ∫
Ω
T · ψdx ≤

∫
Ω
H(δmn) · ψdx.395

So we have H(δmn) = T and396

(3.23) 2λn[mn−1 + δmn + lnD − lnTn] +H(δmn) = 0.397

In a similar way, there holds,398

(3.24) 2λn[mn−1 + δmn + lnD − lnTn]
1

Tn
− µdiv(

∇δsn
|∇δsn|

) = 0.399

Then by (3.21), (3.22), (3.23) and (3.24), we conclude that (vn,un, δmn, δsn) is a minimizer400

of (3.1).401

At the end of this section, we focus on the numerical implementation of the subproblem402

(3.2)-(3.5). For some given domain Ω = (0, a)× (0, a) and scale number n, we define h = a
NS

403

for some given NS ∈ N+. Here, we also define (x1)i = ih, (x2)j = jh for i, j = 0, 1, 2, · · · , NS404

and Pi,j = ((x1)i, (x2)j) for i, j = 0, 1, 2, · · · , NS .405

v-problem: Define r(v) = mn−1 + δmk
n + lnD − ln(T ◦ ϕ̃n−1(x + v(x)) − sn−1 − δskn).406

By using the Taylor’s formula, there holds407

(3.25) r(vk+1
n ) ≈ r(ukn)− Lk · (vk+1

n − ukn),408

where Lk = (Lx, Ly)
T = 1

T◦ϕ̃n−1(x+ukn(x))−sn−1−δskn
∇uT ◦ϕ̃n−1(x+ukn(x)). Substituting (3.25)409

into (3.2), we obtain the following Euler-Lagrange equation for (3.2):410

(3.26) Gvk+1
n = φ(ukn), ∀x ∈ Ω,411
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where412

G =

(
1 + 2λn−1θnL

2
x, 2λn−1θnLxLy

2λn−1θnLxLy, 1 + 2λn−1θnL
2
y

)
, vk+1

n =

(
vk+1
n,1

vk+1
n,2

)
,413

414

φ(ukn) =

(
ukn,1 + 2λn−1θn[r(ukn)Lx + L2

xu
k
n,1 + LxLyu

k
n,2]

ukn,2 + 2λn−1θn[r(ukn)Ly + LxLyu
k
n,1 + L2

yu
k
n,2]

)
,415

and ukn , (ukn,1, u
k
n,2)T . By solving the linear system (3.26), one gets the updated vk+1

n for416

each x ∈ Ω.417

u-problem: Based on the updated vk+1
n , the Euler-Lagrange equation for u from (3.3) is418

formulated as follows:419

(3.27) 2µθndivα∗(∇αuk+1
n )− 2Θθn4uk+1

n + uk+1
n = vk+1

n ∀x ∈ Ω.420

Concerning the numerical computation of (3.27), the multigrid method is used to accelerate421

the algorithm. The details of the multigrid method for (3.27) are listed in Appendix B.422

m-problem: By ignoring the constant term, (3.4) is essentially equivalent to the following423

convex optimization problem:424

δmk+1
n = arg min

mn−1+m∈CΩ

1

2

∫
Ω
|g −m|2dx +

µ

2λn−1

∫
Ω
|∇m|dx ∀x ∈ Ω,(3.28)425

426

where g(x) = ln(T ◦ ϕ̃n−1(x + vk+1) − sn−1(x) − δskn(x)) − mn−1(x) − lnD(x). Without427

the constraint K1 ≤ m ≤ K2, (3.28) is essentially a standard form of total variation (TV)428

minimization. The solution of (3.28) (without constraint K1 ≤ m ≤ K2) is,429

(3.29) m = g − PλK(g).430

Note that here and in what follows, PA(v) denotes the element in A which minimizes the431

distance between v and all the elements in A. Here we use the Chambolle Projection algorithm432

[2] to compute PλK(g). By giving the initial value p0 = (0, 0), 0 < τ < 1
8 and the following433

iterative sequence434

pl+1
i,j =

pl + τ∇(divpl − g/λ)i,j
1 + τ |∇(divpl − g/λ)i,j |

,435

λdivpl → PλK(g) with l → +∞ [2]. Then, based on (3.29), we get the solution of (3.28) by436

projecting the solution of (3.29) onto the set CΩ:437

(3.30) (δmk+1
n )i,j =


[g − PλK(g)]i,j , K1 ≤ [g − PλK(g)]i,j ≤ K2,

K1, [g − PλK(g)]i,j < K1,

K2, [g − PλK(g)]i,j > K2,

438

for i, j = 0, 1, 2, · · · , NS .439
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s-problem: Define G(Ω) = {s ∈ BV0(Ω)|s(x) ≤ κ−κ0−sn−1(x) for ∀ x ∈ Ω}. Then G(Ω)440

is a closed and convex set. Assume that δsn is a solution of (3.3). Then for any r ∈ G(Ω),441

there holds δsn + τ(r − δsn) = (1 − τ)δsn + τr ∈ G(Ω) for 0 ≤ τ ≤ 1. Next, we define442

J(τ) = En(vk+1
n ,uk+1

n , δmk+1
n , δsn + τ(r − δsn)), which yields443

J(0) ≤ J(τ) ∀τ ∈ [0, 1].444

Therefore,445

(3.31) 0 ≤ J ′(0) =

∫
Ω
F(δsn) · (r − δsn)dx, for ∀ r ∈ G,446

where F(δsn) =
2λn(mn−1+δmk+1

n +lnD−ln(T◦ϕ̃n−1(x+vk+1
n )−sn−1−δsn))

T◦ϕ̃n−1(x+vk+1
n )−sn−1−δsn

− µdiv
(
∇δsn
|∇δsn|

)
. Note that447

F is a monotone operator [22] and (3.31) is equivalent to δsn = PG [δsn − %F(δsn)], which448

induces the following iterative method for (3.3):449

δsl+1
n = PG [δsln − %F(δsln)], l = 0, 1, 2, · · · ,(3.32)450451

with % > 0. Concerning the projection in (3.32), it is essentially to solve the following452

optimization problem:453

(δsl+1
n )i,j = arg min

wi,j
‖[δsln − %F(δsln)]i,j − wi,j‖2,454

subject to wi,j ≤ κ− κ0 − (sn−1)i,j for i, j = 0, 1, 2, · · · , NS . That is,455

(3.33) (δsl+1
n )i,j =

{
[δsln − %F(δsln)]i,j , [δsln − %F(sln)]i,j ≤ κ− κ0 − (sn−1)i,j ,

κ− κ0 − (sn−1)i,j , [δsln − %F(δsln)]i,j > κ− κ0 − (sn−1)i,j ,
456

for i, j = 0, 1, 2, · · · , NS .457

To summarize, the ADM algorithm for solving (3.1) is listed in Algorithm 3.1. Further-458

more, based on Algorithm 3.1, we propose Algorithm 3.2 to implement the multiscale approach459

(2.1)-(2.2), which will be refined next based on the view of the multi-resolution.460

Algorithm 3.1 ADM for (3.1)

Initialization: k = 0, u0
n = 0, v0

n = 0, m0
n = 0, s0

n = 0, Ω and maximum iteration times K.
while k ≤ K

Step 1. Update vk+1
n using (3.26);

Step 2. Update uk+1
n using (3.27);

Step 3. Update δmk+1
n using (3.30);

Step 4. Update δsk+1
n using (3.33);

Set k = k + 1;
endwhile
Output: un = uKn ,vn = vKn ,δmn = δmK

n , δsn = δsKn .
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Algorithm 3.2 Multiscale algorithm for (2.1)-(2.2)

Initialization: n = 0, u0
n = 0, v0

n = 0, δm0
n = 0, δs0

n = 0, λn, θn(n = 0, 1, 2, · · · , N), Θ and
maximum scale N .
while n ≤ N

Step 1. Use Algorithm 3.1 to compute un, vn, δmn and δsn on Ω;
Step 2. Compute ϕ̃n, mn and sn on Ω;
Set n = n+ 1;

endwhile
Output: ϕ̃N ,mN , sN .

4. Coarse-to-fine strategy for the multiscale approach. To solve the multiscale approach461

(2.1)-(2.2), one needs to iteratively solve the subproblem (3.2)-(3.5) for each scale n (See462

Algorithm 3.2 for details). This strategy is not yet efficient. Based on the view of the multi-463

resolution, we now propose a modified coarse-to-fine strategy for the numerical implementation464

of the multiscale approach (2.1)-(2.2). This strategy contains following two steps (the flow465

chart of the proposed coarse-to-fine strategy is shown in Fig 3. Note that here and in what466

follows, Ω ↓ 2n denotes the downsampling of the region Ω with size 2n. For example, given467

the region Ω = (0, 128)× (0, 128), Ω ↓ 21 denotes the region (0, 64)× (0, 64)):468

Figure 3. The flow chart of the proposed coarse-to-fine strategy for the diffeomorphic image registration
joint intensity correction. Note that here I denotes the image decomposition process; R denotes the image
registration process; d denotes the downsampling process.

(I) Image decomposition: To improve the resolution of downsampled images, image469

decomposition process is additionally introduced. Here, the decomposition model we used470

is the canonical multiscale image decomposition model developed by [30, 33]. This model is471
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essentially the following definite partial differential equation (PDE) problem:472

(4.1)


∂ξ(x, t)

∂t
= ρ(t)div

(
δ(x)∇ξ(x, t)
|∇ξ(x, t)|

)
, x ∈ Ω, t > 0,

ξ(x, 0) = f(x), x ∈ Ω,

ξ(x, t) |x∈∂Ω= 0, t > 0,

473

where we set ρ(t) = 1.05t, δ(x) = 1√
1+|∇(Gι∗f)(x)|2/β2

, β = 0.07 and Gι is a Gaussian kernel474

with a small standard deviation ι. By choosing N + 1 different time points 0 = t0 < t1 <475

· · · < tN and setting f = T or f = D, we obtain the image decomposition results: TN , TN−1,476

· · · , T 0 and DN , DN−1, · · · , D0, respectively. Concerning the numerical implementation of477

(4.1), one can refer to [33] for details. Therefore, we downsample the decomposed images478

Tn(·), Dn(·) (n = 0, 1, 2, · · · , N) with size 2n to obtain the downsampled images Tnds(·) and479

Dn
ds(·), respectively.480

(II) Image registration: The coarse-to-fine strategy for a multiscale approach of prob-481

lem joint image registration and intensity correction model is divided into the following N + 1482

steps, here and in what follows, Ωn = Ω ↓ 2N−n(n = 0, 1, 2, · · · , N):483

Step 0. By taking TNds (·) and DN
ds(·) as the floating image and the target image, respec-484

tively, we solve the following variational problem on Ω0:485

(4.2) (u0, δm0, δs0) ∈ arg min
(u,m,s)∈Lε0 (Ω0)

J̃0(u,m, s),486

where J̃0(u,m, s) = λ0

∫
Ω0

(m(x) + lnDN
ds(x)− ln(TNds (x + u(x))− s(x)))2dx + µRΩ0(u,m, s),487

Lε0(Ω0) = (A(Ω0)\Bε0(Ω0))×CΩ0×SV0(Ω0) and ε0 > 0. RΩn(u,m, s) is defined by replacing488

Ω with Ωn in (1.3). Define ϕ̃0(x) = ϕ0(x) = x + u0(x), m0(x) = δm0(x) and s0(x) = δs0(x)489

for each x ∈ Ω0.490

Step 1. Scale ϕ̃0(x), m0(x) and s0(x) to Ω1 and solve the following variational problem491

on Ω1 (note that here |Ω1| = 4|Ω0|):492

(4.3) (u1, δm1, δs1) ∈ arg min
(u,m0+m,s0+s)∈Lε1 (Ω1)

J̃1(u,m, s),493

where J̃1(u,m, s) = λ1

∫
Ω1

(m0(x) +m(x) + lnDN−1
ds (x)− ln(TN−1

ds ◦ ϕ̃0(x + u(x))− s0(x)−494

s(x)))2dx + µRΩ1(u,m, s), Lε1(Ω1) = (A(Ω1) \ Bε1(Ω1))× CΩ1 × SV0(Ω1) and ε1 > 0. Define495

ϕ1(x) = x + u1(x), ϕ̃1(x) = ϕ̃0 ◦ϕ1(x), m1(x) = m0(x) + δm1(x) and s1(x) = s0(x) + δs1(x)496

for each x ∈ Ω1.497

...498

Step N . Scale ϕ̃N−1(x), mN−1(x) and sN−1(x) to ΩN and solve the following variational499

problem on ΩN (Note that ΩN = Ω):500

(4.4) (uN , δmN , δsN ) ∈ arg min
(u,mN−1+m,sN−1+s)∈LεN (ΩN )

J̃N (u,m, s),501
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where J̃N (u,m, s) = λn
∫

ΩN
(mN−1(x) +m(x) + lnD(x)− ln(T ◦ ϕ̃N−1(x + u(x))− sN−1(x)−502

s(x)))2dx + µRΩN (u,m, s), LεN (ΩN ) = (A(ΩN ) \ BεN (ΩN )) × CΩN × SV0(ΩN ) and εN > 0.503

Define ϕN (x) = x + uN (x), ϕ̃N (x) = ϕ̃N−1 ◦ ϕN (x), mN (x) = mN−1(x) + δmN (x) and504

sN (x) = sN−1(x) + δsN (x).505

To show the convergence of the proposed coarse-to-fine strategy, we introduce some no-506

tations. In the coarse-to-fine strategy, one needs to scale the functions ϕΩn : Ωn → Ωn,507

mΩn : Ωn → R, sΩn : Ωn → R and uΩn : Ωn → R to the functions ϕ : Ω → Ω,508

m : Ω → R, s : Ω → R and u : Ω → R, respectively. By the principle of scaling, there holds509

ϕ(y) = ϕΩn( y
2N−n

), u(y) = 2N−nuΩn( y
2N−n

), m(y) = mΩn( y
2N−n

), and s(y) = sΩn( y
2N−n

),510

where y ∈ Ω and x = y/2N−n ∈ Ωn. Here, functions fΩn(f = ϕ,m, s,u) denote the version511

of the function f on the domain Ωn. In addition, there also holds Tnds(
y

2N−n
) = T (y) and512

Dn
ds(

y
2N−n

) = D(y).513

Based on these notations, we have the following results.514

Theorem 4.1. For any n ≤ N − 1, the coarse level registration problem515

(4.5) (uΩn
n , δmΩn

n , δsΩn
n ) ∈ arg min

(uΩn ,mΩn ,sΩn )∈Lεn (Ωn)

Ẽn(uΩn ,mΩn , sΩn)516

is equivalent to the following variational problem517

(4.6) (un, δmn, δsn) ∈ arg min
(u,m,s)∈Lεn (Ω)

En(u,m, s),518

where Ẽn(u,m, s) = λn
∫

Ωn
(mΩn

n−1(x)+mΩn(x)+lnDN−n
ds (x)− ln(TN−nds ◦ ϕ̃Ωn

n−1(x+uΩn(x))−519

sΩn
n−1(x)− sΩn(x)))2dx + µRΩn(uΩn ,mΩn , sΩn), En(u,m, s) = 4N−nλn

∫
Ω(mn−1(x) +m(x) +520

lnDN−n
ds (x)− ln(TN−nds ◦ ϕ̃n−1(x+u(x))−sn−1(x)−s(x)))2dx+µ(R1,Ω(u)+2N−n(R2,Ω(m)+521

R3,Ω(s))).522

Proof. By letting y = 2N−nx ∈ Ω for any x ∈ Ωn, we get523

Ẽn(uΩn ,mΩn , sΩn)

=
1

4N−n
λn

∫
Ω

(mn−1(y) +m(y) + lnDN−n
ds (y)− ln(TN−nds ◦ ϕ̃n−1(y + u(y))

− sn−1(y)− s(y)))2dy +
µ

16N−n
(R1,Ω(u) + 2N−n(R2,Ω(m) +R3,Ω(s))).

524

Therefore, (4.5) is equivalent to (4.6).525

By Theorem 4.1, the variational problem (4.2)-(4.4) on each coarse grid is equivalent to526

the following variational problem527

(4.7) (un, δmn, δsn) ∈ arg min
(u,m,s)∈Lεn (Ω)

En(u,m, s), n = 0, 1, 2, · · · , N.528

Then based on Theorems 4.1 and 2.5, we give the following convergence result of the proposed529

coarse-to-fine strategy (4.2)-(4.4).530
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Theorem 4.2. Let ϕ̃n and mn, sn (n = 0, 1, 2, · · · , N) be induced by the multiscale approach531

(4.2)-(4.4). Assume three large numbers B = B(Ω), M , λN satisfy lim
n→N−,N→+∞

B4n−3M4n

4N−nλn
=532

0, where M is a positive number depending on u0, δm0, δs0, Ω, α and φ. Then there holds533

φ = δ, i.e., the modified coarse to fine strategy (4.2)-(4.4) is also equivalent to the original534

greedy matching problem (2.17).535

Proof. Based on 4.1, we can transform the variational problems (4.2)-(4.4) into an equiv-536

alent problem (4.7), which is defined on Ω. Based on (4.7), one can notice that (4.7) is537

equivalent to (2.2) with n→ N−. Therefore, we can use Theorem 2.5 to show φ = δ.538

Based on Algorithm 3.1, the proposed coarse-to-fine strategy for the multiscale approach539

(4.2)-(4.4) is summarized in Algorithm 4.1.540

Algorithm 4.1 Coarse-to-fine algorithm for the multiscale approach (4.2)-(4.4)

Initialization: n = 0, u0
n = 0, v0

n = 0, m0
n = 0, s0

n = 0, λn, θn (n = 0, 1, 2, · · · , N), Θ and
maximum scale N .
I: Image decomposition:
Solve the image decomposition model (4.1) by setting f = T and D to obtain the decompo-
sition result; Downsample the decomposed images Tn, Dn (n = 0, 1, 2, · · · , N) with size 2n to
obtain the downsampled images Tnds(·) and Dn

ds(·), respectively.
II: Image registration:

while n ≤ N
Step 1. Use Algorithm 3.1 to compute un, vn, δmn and δsn on Ωn and replace
T (·), D(·) with TN−nsd (·), DN−n

sd (·), respectively;
Step 2. Compute ϕ̃n, mn and sn on Ωn;
Step 3. Scale the definition of ϕ̃n, mn and sn onto a finer domain Ωn+1;
Set n = n+ 1;

endwhile
Output: ϕ̃N ,mN , sN and Tc(·) = T◦ϕ̃N (·)−sN (·)

emN (·) .

Remark 4.3. Algorithm 4.1 is a multi-resolution modification for the Algorithm 3.2. In541

fact, one needs to solve the variational problem on Ω in Algorithm 3.2 while only needs to542

solve the same problem on Ωn(n = 0, 1, 2, · · · , N) in Algorithm 4.1. In fact, |Ωn| = 1
4N−n

|Ω|.543

This implies the Algorithm 4.1 accelerates the Algorithm 3.2, which will be validated in the544

numerical tests in Section 5.545

5. Applications for the proposed multiscale approach. In this section, we perform three546

different kinds of numerical tests to validate the theoretical results and Algorithms in Section547

2-4. The content of this section contains: In Test 5.2, we perform the comparison between548

the proposed coarse-to-fine Algorithm 4.1 and M2FDIR in [20] to show that Algorithm 4.1 is549

more efficient on addressing the image registration problem with local varying illumination.550

In Test 5.3, a comparison between Algorithm 4.1 and Algorithm 3.2 is performed to show that551

the proposed Algorithm 4.1 has advantage on reducing the CPU consumption. In Test 5.4,552

the proposed Algorithm 4.1 is compared with some state-of-art image registration algorithms,553
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like 1DFDIM [17], DFIRA [18], LDDMM [24] and FBNE [31]. All the numerical tests are554

performed under Windows 7 and MATLAB R2012b with Intel core i7-6700 CPU @3.40 GHz555

and 8GB memory. For the quantitative comparison, we choose the following two indexes:556

• Relative sum of squared differences (Re SSD for short) which is defined by557

Re SSD(T,D,u) =
SSD(T (x + u), D)

SSD(T,D)
,558

where SSD(T,D) = 1
2

∑
i,j

(Ti,j −Di,j)
2 ;559

• Mesh folding number (MFN for short) which is defined by560

MFN(u) = ]
(
det J(u) ≤ 0

)
,561

where det J(u) =
(

1 + ∂u1
∂x1

)(
1 + ∂u2

∂x2

)
− ∂u1

∂x2

∂u2
∂x1

and for any set A, ](A) denotes the562

number of elements in A.563

5.1. Sensitivity test for parameters λn and µ in Algorithm 4.1. λn and µ are two key564

parameters for Algorithm 4.1. To show the sensitivity for the sequence {λn} and the parameter565

µ, the synthetic image pair (pair I) is used as testing data. For pair I, the floating image and566

target image are defined as follows:567

T (x) = 255χΓ̄1
(x) + 0.01, D(x) = 255χΓ̄2

(x) + 180χΓ̄3
(x) + 0.01,568

where Ω = (0, 128) × (0, 128), Γ̄1 = {x = (x1, x2)T : (x1 − 65)2 + (x2 − 65)2 ≤ 402}, Γ̄2 =569

{x = (x1, x2)T : (x1 − 65)2 + (x2 − 65)2 < 202}, Γ̄3 = {x = (x1, x2)T : 202 ≤ (x1 − 65)2 +570

(x2 − 65)2 ≤ 302} and χ is an indicator function. The original synthetic image pair is shown571

in Fig 5.572

By setting λn = λ0 × 4n(n = 0, 1, 2, · · · ) and µ ∈ [0.01, 1000] and λ0 ∈ [3000, 5500], we573

use the Algorithm 4.1 to perform the registration for image pair I by giving 546 different574

groups(only 169 groups are shown on Fig 4 to make the vision more plausible) of λ0 and µ.575

By viewing the final Re SSD(T,D,u) as the heat value, the heat map for λ0 and µ is shown576

in Fig 4.577

By Fig 4, we find that the final Re SSD(T,D,u) is not affected by the parameters λn and578

µ. This validates the fact that the multiscale approach (2.1)-(2.2) provides a solution to the579

greedy matching problem (2.17) which has nothing to do with the parameters λn and µ.580

5.2. Comparison between the proposed coarse-to-fine Algorithm 4.1 and M2FDIR581

in [20]. To show that the proposed model via (4.2)-(4.4) properly treats the locally varying582

illumination, we compare the proposed Algorithm 4.1 with the multiscale M2FDIR in [20],583

which does not take the locally varying illumination into consideration.584

The test pair in this part contains synthetic image pair I and two brain MRI image pairs585

(II-III) with local varying illumination.586

For pair I, One can notice from Fig 5 that there is a shadow on the outer ring of the circle587

in the target image D(·), while no shadow appears in the floating image T (·). By using image588

pair I, we use the proposed Algorithm 4.1 and M2FDIR in [20] for registration. The final589
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Figure 4. The heat map for λ0 and µ

(a) (b) (c)

(d) (e) (f)

Figure 5. Comparison on pair I: (a) floating image T (·); (b) target image D(·); (c) T ◦ ϕ̃N (·) in Algo-
rithm 4.1, Re SSD=6.33%; (d) Tc ◦ ϕ̃N (·) in Algorithm 4.1,Re SSD=3.40%; (e) T ◦ ϕ̃KM

(·) in M2FDIR [20],
Re SSD=5.14%; (f) mesh grid of the deformation ϕ̃N (·) in Algorithm 4.1

Table 1
Quantitative comparison between registration results of Algorithm 4.1 and M2FDIR (Test 5.2)

Data Algorithm Re-SSD(%) MFN CPU/s

Pair I M2FDIR [20] 5.14 0 321.8
Algorithm 4.1 3.40 0 31.2

Pair II M2FDIR [20] 46.86 0 536.1
Algorithm 4.1 11.82 0 36.1

Pair III M2FDIR [20] 9.91 0 661.3
Algorithm 4.1 3.11 0 43.1

This manuscript is for review purposes only.



24 PENG CHEN, KE CHEN, HUAN HAN AND DAOPING ZHANG

registration results and quantitative comparison are listed in Fig 5 and Table 1. By Fig 5(f),590

one can notice that the proposed Algorithm 4.1 produces a diffeomorphic deformation ϕ. It591

follows from Fig 5(d) that the registration result of Algorithm 4.1 matches the shadow ring592

of the target image D(·) well, while the final result of M2FDIR has trouble in matching the593

shadow ring. This shows that the proposed Algorithm 4.1 addresses the image registration594

with local illumination well.595

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6. Comparison on pair II (First row): (a) floating image T (·); (b) target image D(·); (c) T ◦ ϕ̃N (·)
in Algorithm 4.1, Re SSD=85.31%; (d) Tc ◦ ϕ̃N (·) in Algorithm 4.1,Re SSD=11.82%; (e) T ◦ ϕ̃KM

(·) in
M2FDIR [20], Re SSD=46.86%. Comparison on pair III (Second row): (f) floating image T (·); (g) target
image D(·); (h) T ◦ ϕ̃N (·) in Algorithm 4.1, Re SSD=86.04%; (i) Tc ◦ ϕ̃N (·) in Algorithm 4.1, Re SSD=3.11%;
(j) T ◦ ϕ̃KM

(·) in M2FDIR [20], Re SSD=9.91%;

For pair II (see the first row of Fig 6), there are two domains which suffer from local varying596

illumination on the lower left of the floating image T (·), while no illumination appears in the597

target image D(·). For pair III (see the second row of Fig 6), there is local illumination on598

the right side of the floating image T (·), while local illumination appears on the opposite side599

of the target image D(·). We use Algorithm 4.1 and M2FDIR for pairs II and III. The results600

are shown in Fig 6 and the quantitative comparison result are listed in Table 1.601

By Fig 6(e), we see that the registration result on pair II of M2FDIR is disturbed by the602

local varying illumination and leads to an unexpected result. In addition, one can notice from603

Fig 6(d) that the proposed Algorithm 4.1 addresses the local varying illumination well. This604

validates that the proposed Algorithm 4.1 has advantage on addressing the registration with605

local varying illumination over M2FDIR. This is also the main motivation for us to study606

the problem joint diffeomorphic image registration and intensity correction. Concerning the607

comparison on pair III, it follows from Fig 6(j) that the registration result is seriously bad in608

the region with local varying illumination, while the proposed Algorithm 4.1 can accurately609

correct the intensity distortion caused by the local illumination (see Fig 6(i) for details).610

This validates the conclusion that the proposed Algorithm 4.1 addresses intensity distorted611

registration well.612

5.3. Comparison between the proposed coarse-to-fine Algorithm 4.1 and Algorithm 3.2613

(without coarse-to-fine process). To solve the proposed multiscale approach (2.1))-(2.2)),614

one has two choices: (1) Use the proposed Algorithm 3.2 without coarse-to-fine strategy. For615

this choice, one is expected to implement the ADM process (4.2)-(4.4) on Ω for each scale616
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n. (2) Use the proposed coarse-to-fine Algorithm 4.1. For this choice, one only needs to617

solve the ADM process (4.2)-(4.4) on Ωn for each scale n. Note that Ωn is a domain smaller618

than Ω, which indicates that the proposed coarse-to-fine strategy (4.2)-(4.4) has advantage619

on reducing the CPU consumption over Algorithm 3.2.620

To numerically validate this theoretical result, we perform the comparison between Al-621

gorithm 4.1 and Algorithm 3.2. Both these two algorithms aim to find the solution of the622

multiscale approach (2.1)-(2.2), where the coarse-to-fine strategy is introduced in Algorithm623

4.1, while no multi-resolution based coarse-to-fine strategy is used in Algorithm 3.2. The data624

set used for the test are labelled IV-VI. For pair IV, it contains five image pairs which are col-625

lected at two different time from one patient (No.1) who suffers from mouth cavity lymphoma.626

Similarly, data V and VI contain the same content from some other two patients (No.2 and627

No.3). By registering these image pairs, clinicians can extract useful information from the628

difference between the deformed image Tc ◦ ϕ̃N (·) and the target image D(·). Furthermore, by629

analysing the difference, some evaluation for the severeness of the tumor is made. Therefore,630

the accuracy of the image registration result is of vital importance for the evaluation. In this631

part, we use Algorithm 4.1 and Algorithm 3.2 to register these 15 image pairs. The registra-632

tion result for IV-VI are listed on Fig 7-Fig 9 and Table 2, where Re SSD is represented by633

the mean value ± standard deviation of five different image pairs for each patient, and the634

CPU is represented in a similar way.635

Table 2
Quantitative comparison between registration results of Algorithm 4.1 and Algorithm 3.2 (Test 5.3)

Data Algorithm Re-SSD(%) MFN CPU/s

data IV Algorithm 4.1 10.67± 2.47 0 38.5± 5.3
Algorithm 3.2 11.19± 3.44 0 518.5± 31.9

data V Algorithm 4.1 9.82± 2.47 0 36.1± 6.1
Algorithm 3.2 13.16± 3.51 0 436.7± 35.6

data VI Algorithm 4.1 8.96± 1.68 0 43.1± 3.8
Algorithm 3.2 12.76± 0.72 0 621.7± 45.6

By Table 2, we see that the registration result of the proposed Algorithm 4.1 is similar to636

(though a bit better than) Algorithm 3.2. However, the CPU consumption of Algorithm 4.1637

is greatly reduced compared with Algorithm 3.2. This shows the efficiency of the proposed638

coarse-to-fine Algorithm 4.1.639

5.4. Comparison between Algorithm 4.1 and some other image registration algorithm-640

s. In this part, to further validate the efficiency of the proposed coarse-to-fine Algorithm 4.1,641

we perform some comparison between Algorithm 4.1 and 1DFDIM [17], DFIRA [18], LD-642

DMM [24] and FBNE [31]. For this purpose, we use these five algorithms to match three643

different medical image pairs which are labelled with VII-IX. Here, to show the efficiency of644

the proposed multiscale approach, VII-IX are kept the same state with data set used in [31].645

These three image pairs are introduced as follows. For image pair VII, the floating image646

T (·) contains highly contrasted region in the middle of the region. By viewing the contrast as647

bias field relative to the target image D(·), the elimination of this kind of bias field provides a648
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Figure 7. Comparison on IV: The first column is the floating image T (·) for each image pair; The second
column is the floating image D(·) for each image pair; The third and fourth columns are the image registration
results of Algorithm 4.1 and Algorithm 3.2 for each image pair, respectively.

strong evidence that the proposed multiscale approach for the variational model joint image649

registration and intensity correction has advantage on addressing the diffeomorphic image650

with local varying illumination. This is the main reason why these image pairs are selected651

for the numerical comparison. The quantitative comparison results for image pair VII are652

listed in Fig 10 and Table 3. One can notice from Fig 10 that only the proposed algorithm653

and the FBNE in [31] eliminate the bias field in the middle of the region well. The other three654

algorithms which do not take intensity correction into consideration lead to a narrow white655

bias field. This phenomenon occurs due to the minimization of the similarity S(u). However,656

these solutions are not expected in image registration of image pair VII. This shows the ne-657

cessity for introducing the intensity correction process in the proposed Algorithm 4.1. Note658

that [31] pursuits a minimizer of the cost functional with three different regularizations, while659
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Figure 8. Comparison on V: The first column is the floating image T (·) for each image pair; The second
column is the floating image D(·) for each image pair; The third and fourth columns are the image registration
results of Algorithm 4.1 and Algorithm 3.2 for each image pair, respectively.

Algorithm 4.1 searches for the minimizer of S(u,m, s) without any regularization. The com-660

parison between Algorithm 4.1 and FBNE algorithm in [31] further validates the advantage of661

greedy matching. However, without proper multiscale consideration, greedy matching with-662

out regularization is not expected to work well. This is the main reason why the multiscale663

approach is introduced in this paper.664

For image pairs VIII, there is a low contrast in some local region of the floating image T (·),665

which may make it ineffective for some image registration models without intensity correction666

process. The registration result for image pair VIII is listed in Fig 11 and Table 3. This image667

with a low contrast in floating image T (·), the proposed algorithm and FBNE [31] successfully668

recover the low contrast region and lead to a final result with more details on the tissue. This669

shows the importance of intensity correction in the registration for these image pairs with a670
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Figure 9. Comparison on VI: The first column is the floating image T (·) for each image pair; The second
column is the floating image D(·) for each image pair; The third and fourth columns are the image registration
results of Algorithm 4.1 and Algorithm 3.2 for each image pair, respectively.

low contrast floating image. In this view, it is helpful to use the proposed algorithm to register671

the image pairs which contains at least one high resolution image and one low contrast image.672

In addition, one can notice from Table 3 that the proposed Algorithm 4.1 achieves the best673

results for image pair VIII.674

For image pair IX, the floating image contains bias field and varying illumination on675

different regions of the domain. Compared with image pair II used in Test 5.2, there is676

a square shadow surrounding the brain. This may affect the registration result. By Fig677

12, we see that the local bias and square shadow are well eliminated in the final result of678

the proposed Algorithm 4.1 and FBNE. This is an advantage led by bias correction in the679

proposed Algorithm 4.1 and FBNE. Moreover, by the quantitative comparison on Table 3,680

one can see that the proposed Algorithm 4.1 achieves a smaller Re-SSD than FBNE.681
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(a) (b) (c) (d)

(e) (f) (g)

Figure 10. Comparison on VII: (a) floating image T (·); (b) target image D(·); (c) T ◦ ϕ̃N (·) in Al-
gorithm 4.2, Re SSD=9.76%; (d) 1DFDIM, Re SSD=25.72%; (e) DFIRA, Re SSD=22.8%; (f) LDDMM,
Re SSD=50.05%; (g) FBNE, Re SSD=12.57%.

(a) (b) (c) (d)

(e) (f) (g)

Figure 11. Comparison on VIII: (a) floating image T (·); (b) target image D(·); (c) T ◦ ϕ̃N (·) in Al-
gorithm 4.1, Re SSD=5.28%; (d) 1DFDIM, Re SSD=76.09%; (e) DFIRA, Re SSD=66.54%; (f) LDDMM,
Re SSD=51.23%; (g) FBNE,Re SSD=24.41%.

6. Conclusion. In this paper, we propose a variational model for joint diffeomorphic image682

registration and intensity correction. Based on the joint model, some related greedy matching683

problem (2.17) is proposed. For solving the greedy matching problem (2.17), the multiscale684

approach is introduced which addresses the instability by directly solving the greedy matching685

problem (2.17). This provides a theoretical support for this kind of research. For the numerical686

computation of the multiscale approach, an ADM method is proposed and the convergence687

of this process is proved. In addition, a coarse-to-fine strategy is introduced to accelerate the688

registration algorithm and the convergence of the coarse-to-fine strategy is proved. Finally,689

three different kinds of numerical tests are performed to validate the theoretical results in this690
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(a) (b) (c) (d)

(e) (f) (g)

Figure 12. Comparison on IX: (a) floating image T (·); (b) target image D(·); (c) T ◦ϕ̃N (·) in Algorithm 4.1,
Re SSD=3.05%; (d) 1DFDIM,Re SSD=83.2%; (e) DFIRA, Re SSD=68.96%; (f) LDDMM, Re SSD=36.18%;
(g) FBNE, Re SSD=15.44%.

Table 3
Quantitative comparison between five different image registration algorithms

Data Algorithm Re-SSD(%) MFN CPU/s

Algorithm 4.1 9.76 0 40.3
1DFDIM [17] 25.72 0 62.7

data VII DFIRA [18] 22.80 0 372.6
LDDMM [24] 50.05 0 21.2

FBNE [31] 12.57 0 118.6

Algorithm 4.1 5.28 0 42.2
1DFDIM [17] 76.09 0 86.3

data VIII DFIRA [18] 66.54 0 456.7
LDDMM [24] 51.23 0 30.2

FBNE [31] 24.41 0 101.6

Algorithm 4.1 3.05 0 50.4
1DFDIM [17] 83.2 0 90.3

data IX DFIRA [18] 68.96 0 748.4
LDDMM [24] 36.18 0 23.7

FBNE [31] 15.44 0 117.3

paper. For the future research, we may extend this work to the field of image registration691

joint segmentation.692
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Appendix A. Estimation on L∞ norm for the Hessian matrix of ln(T ◦ ϕ̃n−1(x + vkn)−792

sn−1 − δskn) with respect to vkn.793

The Hessian matrix of ln(T ◦ ϕ̃n−1(x + vkn)− sn−1 − δskn) is formulated as794

H =
1

(T ◦ ϕ̃n−1(x + vkn)− sn−1 − δskn)2

(
H1 H2

H2 H3

)
,795

where H1 = T ◦ ϕ̃n−1(x + vkn) ∂2

∂x2
1

(
T ◦ ϕ̃n−1(x + vkn)

)
−
(

∂
∂x1

T ◦ ϕ̃n−1(x + vkn)
)2

, H2 = T ◦796

ϕ̃n−1(x+vkn) ∂2

∂x1∂x2

(
T ◦ ϕ̃n−1(x + vkn)

)
−
(

∂
∂x1

T ◦ ϕ̃n−1(x + vkn)
)(

∂
∂x2
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)
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H3 = T ◦ϕ̃n−1(x+vkn) ∂2

∂x2
2

(
T ◦ ϕ̃n−1(x + vkn)

)
−
(

∂
∂x2

T ◦ ϕ̃n−1(x + vkn)
)2

. By (1.3) and (3.5),798

we know (T ◦ ϕ̃n−1(x + vkn)− sn−1 − δskn)2 ≥ (κ− κ0)2.799

Now we give an estimate on the L∞ norm of H1. Since α > 3.5, by the Sobolev embddding800

Theorem [9] (Hα
0 (Ω) ↪→ C2(Ω)), we obtain801

‖∇2ϕ‖2C(Ω) = ‖∇2u‖2C(Ω) ≤CR1(u) ≤ Cλn
∫

Ω
(mn−1 + lnD − ln(T ◦ ϕ̃n−1 − sn−1))2dx

≤2Cλn|Ω|(K2 + ln2(M/κ)2) ≤ λnM̃,
802

where M̃ , M̃(Ω, α) = 2C|Ω|(K2 + ln2(M/κ)2) > 0 and C = C(Ω, α) is a positive constant803

(see Lemma 3.2 and Lemma 3.3 in [16] for details). Similarly, there holds804

‖un‖2C1(Ω) ≤ λnM̃.805

Note that806

∇xϕ̃n(x) = ∇g1ϕ0 · ∇g2ϕ1 · · · ∇gn−1ϕn−2 · ∇gnϕn−1 · ∇xϕn(x),807

where gk = ϕk ◦ϕ2 · · ·ϕn for k = 1, 2, · · · , n. Since gk are mappings from Ω to Ω, by (A), we808

obtain809

‖∇xϕ̃n(x)‖2C(Ω) ≤ λ0λ1 · · ·λnM̃n ≤ (λnM̃)n.810

Then by the chain rule, we have811

∂T ◦ ϕ̃n−1

∂x1
=
∂T ◦ ϕ̃n−1

∂ϕ̃1
n−1

∂̃ϕ
1
n−1

∂x1
+
∂T ◦ ϕ̃n−1

∂ϕ̃2
n−1

∂̃ϕ
2
n−1

∂x1
812

and813

∂2T ◦ ϕ̃n−1

∂x2
1

=
∂2T ◦ ϕ̃n−1

∂(ϕ1
n−1)2

(
∂ϕ1

n−1

∂x1

)2

+ 2
∂2T ◦ ϕ̃n−1

∂ϕ1
n−1∂ϕ

2
n−1

∂ϕ̃1
n−1

∂x1

∂ϕ̃2
n−1

∂x1
,

+
∂T ◦ ϕ̃n−1

∂ϕ̃2
n−1

∂2ϕ̃2
n−1

∂x2
1

+
∂2T ◦ ϕ̃n−1

∂(ϕ2
n−1)2

(
∂ϕ2

n−1

∂x1

)2

+
∂T ◦ ϕ̃n−1

∂ϕ̃1
n−1

∂2ϕ̃1
n−1

∂x2
1

+
∂T ◦ ϕ̃n−1

∂ϕ̃2
n−1

∂2ϕ̃2
n−1

∂x2
1

.

814

This concludes815 ∥∥∥∥∂T ◦ ϕ̃n−1

∂x1

∥∥∥∥2

C(Ω)

≤ 4M(λnM̃)n816

and817 ∥∥∥∥∂2T ◦ ϕ̃n−1

∂x2
1

∥∥∥∥2

C(Ω)

≤ 6M(λnM̃)n.818
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Based on the above mentioned discussion, we can get819

‖H1‖C(Ω) ≤ 10M
2
(λnM̃)n.820

In addition, we can also obtain the similar estimate for H2, H3. Therefore, we conclude821

‖H(σ)‖C(Ω) ≤
10M

2
(λnM̃)n

(κ− κ0)2
.822

Appendix B. Multigrid method for PDE (3.27). By adopting Grunwald approximation823

[38], ∂αf(x)
∂xαi

, ∂α∗f(x)
∂xα∗i

(i = 1, 2) are discretized as follows:824

∂αf(xp,q)

∂xαi
= δαi−f(xp,q) +O(h),

∂α∗f(xp,q)

∂xα∗i
= δαi+f(xp,q) +O(h),(B.1)825

826

where δα1−fp,q = 1
hα

p+1∑
l=0

ρ
(α)
l fp−l+1,q, δ

α
1+fp,q = 1

hα

N−p+2∑
l=0

ρ
(α)
l fp+l−1,q, δ

α
2−fp,q = 1

hα

q+1∑
m=0

ρ
(α)
m827

fp,q−m+1, δα2+fp,q,r = 1
hα

N−q+2∑
m=0

ρ
(α)
m fp,q+m−1, and ρ

(α)
l is computed by the formula ρ

(α)
0 = 1,828

ρ
(α)
l = (1− 1+α

l )ρ
(α)
l−1.829

Let Uq = (f1,q, f2,q, · · · , fN,q)T , then it follows from (B.1) that830

∂αUq
∂xα1

≈ BN,αUq,
∂α∗Uq
∂xα∗1

≈ BT
N,αUq,831

where
∂αUq
∂xα1

=
(
∂αf1,q

∂xα1
,
∂αf2,q

∂xα1
, · · · , ∂

αfN,q
∂xα1

)T
,
∂α∗Uq
∂xα∗1

=
(
∂α∗f1,q

∂xα∗1
,
∂α∗f2,q

∂xα∗1
, · · · , ∂

α∗fN,q
∂xα∗1

)T
and832

833

BN,α = 1
hα


ρ

(α)
1 ρ

(α)
0 0 · · · 0 0

ρ
(α)
2 ρ

(α)
1 ρ

(α)
0 · · · 0 0

...
...

...
. . .

...
...

ρ
(α)
N−1 ρ

(α)
N−2 ρ

(α)
N−3 · · · ρ

(α)
1 ρ

(α)
0

ρ
(α)
N ρ

(α)
N−1 ρ

(α)
N−2 · · · ρ

(α)
2 ρ

(α)
1

.834

Hence, we obtain835

∂α∗

∂xα∗1

(
∂αUq
∂xα1

)
= BT

N,αBN,αUq , AN,αUq.836

In a similar way, we obtain the following two approximations for ∂α∗

∂xα∗2

(
∂αf(x)
∂xα2

)
:837

∂α∗

∂xα∗2

(
∂αVp
∂xα2

)
= AN,αVp,838
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where Vp = (fp,1, fp,2, · · · , fp,N )T . By adopting the Grunwald approximation, divα∗(∇αuk+1
n )839

and ∆uk+1
n are approximated by the following two formulas:840

(B.2)
(

divα∗(∇αuk+1
n,β )

)
p,q
≈

N∑
l=0

(
aN,α(p, l)(uk+1

n,β )l,q + aN,α(q, l)(uk+1
n,β )p,l

)
841

and842

(B.3)
(

∆uk+1
n,β

)
p,q
≈ 1

h2
((uk+1

n,β )p+1,q + (uk+1
n,β )p−1,q + (uk+1

n,β )p,q+1 + (uk+1
n,β )p,q−1 − 4(uk+1

n,β )p,q),843

where β = 1, 2. Based on (B.2) and (B.3), (3.27) is discretized as follows:844

(1 + 4γn + 2θnµ(aN,α(p, p) + aN,α(q, q)))(uk+1
n,β )p,q

+2θnµ

NS∑
l=1,l 6=p,q

(
aN,α(p, l)(uk+1

n,β )l,q + aN,α(q, l)(uk+1
n,β )p,l

)
−γn

(
(uk+1
n,β )p+1,q + (uk+1

n,β )p−1,q + (uk+1
n,β )p,q+1 + (uk+1

n,β )p,q−1

)
= (vk+1

n,β )p,q,

(B.4)845

where γn = 2θnΘ
h2 . Then (B.4) induces the following solver for (3.27):846

(uk+1
n,β )(t+1)

p,q =
1

Υn

(
(vk+1
n,β )p,q − 2θnµ

NS∑
l=1,l 6=p,q

(
aN,α(p, l)(uk+1

n,β )
(t)
l,q + aN,α(q, l)(uk+1

n,β )
(t)
p,l

)
+ γn

(
(uk+1
n,β )

(t)
p+1,q + (uk+1

n,β )
(t)
p−1,q + (uk+1

n,β )
(t)
p,q+1 + (uk+1

n,β )
(t)
p,q−1

))
,

(B.5)847

where Υn = 1 + 4γn + 2θnµ(aN,α(p, p) +aN,α(q, q)) and t = 0, 1, 2, · · · . Hence, based on (B.5),848

the multigrid algorithm for (3.27) can be summarized in Algorithm B.1.849
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Algorithm B.1 2D multigrid algorithm for u-problem

Initialization: uk+1,h
n = uk,hn , uk+1,h

n,0 = uk,hn + Π, µ > 0, k̄ = 0 and maximum iteration times
K.
while ‖uk+1,h

n − uk+1,h
n,0 ‖ ≥ ‖Π‖ and k̄ ≤ K

uk+1,h
n,0 = uk+1,h

n .

Step 1. relax (B.5) with initial guess uk+1,h
n ; compute residual error rk+1,h

n on Ωh;
Set level = L;
Step 2. restrict the residual error to ΩH by using rk+1,H

n = RHh rk+1,h
n .

Set level = level − 1, H = 2h, and relax (B.5) by replacing vk+1
n with rk+1,H

n , and with

initial guess uk+1,H
n = 0 to obtain approximations ūk+1,H

n ; update residual error rk+1,H
n .

Step 3. If level = 1,
do: accurately solve the system (B.5) by replacing vk+1

n with rk+1,H
n to obtain

the solution uk+1,H
n ;

else
do: repeat Step 2 until level = 1.
endif.

Step 4. If level = L,
do: relax (B.5) to obtain the final solution uk+1,h

n for this round and let k̄ = k̄ + 1;
else
do(repeat): interpolate the correction to next fine grid by letting uk+1,h

n,t =

IhHuk+1,H
n ; update current grid approximations using correction ûk+1,h

n = uk+1,h
n,t +

ūk+1,h
n ; relax (B.5) with initial guess ûk+1,h

n on fine grid to obtain approximations

uk+1,h
n and let level = level + 1. Repeat this process until level = L.

endif.
Set k̄ = k̄ + 1;

endwhile
Output: uk+1

n = uk+1,h
n .
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