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Multiscale approach for variational problem joint diffeomorphic image
registration and intensity correction: theory and application®

Peng Chen, Ke Chen®, Huan Han®, and Daoping Zhang;ﬂ
|

Abstract. Image registration matches the features of two images, by minimizing the intensity difference be-
tween them, so that useful and complementary information can be extracted from the mapping.
However, in real life problems, the images may be affected by the imaging environment, such as
varying illumination and noise during the process of imaging acquisition. This may lead to the local
intensity distortion, which makes it meaningless to minimize the intensity difference in traditional
registration framework. To address this problem, we propose a variational model for joint image
registration and intensity correction. Based on this model, the related greedy matching problem
is solved by introducing a multiscale approach for joint image registration and intensity correction.
An alternating direction method (ADM) is proposed to solve each multiscale step, and the conver-
gence of the ADM method is proved. For the numerical implementation, a coarse-to-fine strategy
is proposed to accelerate the numerical algorithm, and the convergence of the proposed coarse-to-
fine strategy is proved. Several numerical tests are also performed to validate the efficiency of the
proposed algorithm.
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1. Introduction. Image registration is to match the features of two images by keeping
one image (target image) unchanged and deforming the other image (floating image). By
comparing the deformed image with the target image, one can extract useful information from
intensity differences. This is a fundamental process for image fusion and medical analysis. For
an overview of image registration and related joint problems, one can refer to [1,3,5-7,10, 14,
15,23,24,32] for details.

Without loss of generality, in this paper, we mainly focus on 2D image registration, which
is stated in the following way. Given two images T'(x), D(x) : x € Q — R and some bounded
domain  C R?, the goal of image registration is to find a mapping (x) : x € Q — Q such
that T'op(-) looks like D(+) as much as possible. For each x € 2, ¢p(x) can be divided into the
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identity part x and the displacement u(x), i.e., ¢(x) = x + u(x). Based on this assumption,
the mono-modality image registration problem is formulated as follows:
(1.1) min AS(u) + pR(u),

ucA
where A, 1 > 0, A is some proper set, S(u) = [,[T(x+u(x)) — D(x)]?dx, R(u) is a regulariza-
tion to produce plausible solutions. For multi-modality diffeomorphic image registration [4,26],
Su) = [o(f1(T)(x+u(x))— f2(D)(x))%dx, f1, f2 are two gray transform functions. The prob-

lem considered in this paper lies between the two types of registration problems because the
given images appear in multi-modalities but the modelling must be done in mono-modality.

Figure 1. Physical mesh folding caused by the deformation ¢

Although image registration has achieved enormous success, it is still a challenging task.
There are mainly two difficulties: (I) physical mesh folding; (II) illposeness of greedy matching.
As shown in Fig 1, physical mesh folding is a phenomenon that points from different objects
are mixed together after transformation. We can find that the essential reason for mesh
folding is the non-bijection of the deformation mapping. Therefore, to eliminate mesh folding,
it is necessary to guarantee that the Jacobian determinant of the deformation is larger than
0 for each pixel [13,18,19]. This is so called ‘orientation-preserving registration’. Under this
framework, several diffeomorphic image registration models have been proposed [8,17-19,21,
25,28,29,34,36,37]. In the pioneering work [8], Lui introduced the quasi-conformal theory to
control the mesh folding. Following this work, several models are proposed to improve the
quasi-conformal model. In [39], Zhang and Chen proposed a diffeomorphic image registration
model by restricting the deformation ¢ into a set which ensures det(Ve(x)) > 0 for each
x € Q. As a supplement, Zhang and Chen [35] introduced a diffeomorphic image registration
model by controlling the modulus of Beltrami coefficient smaller than 1. Han, Wang and
Zhang also gave a series of 2D /3D diffeomorphic image registration models and algorithms by
restricting u into the 2D/3D conformal set [17-19,21].

However, these above mentioned works are all based on the assumption that no intensity
distortion (i.e., illumination and noise) occurs during the process of imaging acquisition. For
example, in Fig 2, locally varying illumination occurs inside the region of the floating image
T'(-) and no illumination in the target image D(-). This leads to the intensity distortion in
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MULTISCALE APPROACH FOR MODEL JOINT REGISTRATION AND INTENSITY CORRECTION 3

(a) T(-) (b) D()

Figure 2. Local varying illumination in MRI image pair

these two regions. In this case, models such as (1.1) by treating 7', D as mono-modal images
fail to register the two images. It is meaningless for latter applications, such as image fusion
and image analysis, even if the sketch of the two objects are exactly matched as a multi-
modal problem. Therefore, it is necessary to introduce some intensity correction steps during
or after image registration. For this purpose, some variational models joint image registration
and intensity correction are proposed [27,31]. By introducing the additive and multiplicative
bias field for intensity correction simultaneously, the relationship between the true image
D*(x) = D.(x) and the target image D(x) is formulated as

D(x) = m(x)D*(x) + 5(x),

where s(x) : x € Q@ — R and m(x) : x € 2 — R* are additive and multiplicative bias fields,
respectively. Then Theljani and Chen [31] proposed a joint model for image registration and
intensity correction:

(1.2) min AS¢.(u,m,s) + pR(u,m, s),

u,m,s

where S.(u,m, s) = [, (m(x)D(x) + s(x) — T(x+u(x)))?dx and R(u,m,s) is a regularization
on u,m and s. Viewing the solution of the variational model (1.2) as Nash game equilibrium,
a novel numerical algorithm for joint image registration and intensity correction is also devised
in [31]. However, the above mentioned mesh folding is not constrained (difficulty I) and the
game solution is a ‘perturbed solution’, not a minimizer of the original variational functional.
The other works on joint image registration and intensity correction can be found in [11,12].

The ultimate goal for joint image registration and intensity correction is to find the
minimizer of the cost functional S.(u,m,s). However, (1.2) aims to find the minimizer of
ASc(u,m, s) + pR(u,m,s). This raises a question of whether or not one can find the glob-
al minimizer of S.(u,m,s) on some proper space without any prior estimate for u,m,s?
This is so called ‘greedy matching’. Concerning this problem (difficulty IT), Han, Wang and
Zhang [20,21] gave an answer in case of m(x) = 1, s(x) = 0 and T, D having no bias (i.e.,
image registration without intensity correction) by introducing a multiscale approach and
proved the equivalence between the proposed multiscale approach and ‘greedy matching’ with
some suitable parameters. For the general cases, to the best of our knowledge, there seems to
have no results. Motivated by [20,21], we aim to extend the work [20] to the case that m, s
belong to some specific Banach spaces. For this purpose, we propose the following variational
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4 PENG CHEN, KE CHEN, HUAN HAN AND DAOPING ZHANG

model for joint diffeomorphic image registration and intensity correction:

1.3 i J = )\Sc PRLLZ] R s 11y 9 )y
(1.3) uGA(Q)\Be(Qr)r,lrln%CQ,seSVo(Q) (u,m, s) te(w,m, 5) + pl(u,m, )
where Sj.(u,m, s) fQ x)+In D(x)—In(T (x+u( ))—s(x)))%dx and R(u m,s) = Ri(u)+
RQ( ) + Rg( ) R1 fQ |VO‘ )|2dX R2 fQ |Vm )‘dX R3 fQ |VS |dX

Note that here and in What follows, we assume that two images T', D map Q onto the interval
[k, M] C RT for some M > x > 0. In addition, for the purpose of eliminating mesh folding,

u is constrained into the set A(Q) \ B:(£2), where A(Q) and B.(Q2) are defined by
6U1 8u2 8u1 8’11,2

1.4 A(Q) =<u= TeHOQP: -—=— - =—7—

(1.4 @) = {u = (i) € g 51— G2 G Fee

and
(1.5) B(Q) = {u = (u1,u)’ € AQ) : det (V(x + u(x))) < €},
for > 2, small ¢ > 0 and H§(Q) is fractional-order Sobelev space [16]. To control the
intensity bias in practice, the multiplicative bias field m is constrained into the set
(1.6) Cao={me BVp(Q): K1 <m < K»},
for some given K1, K5, and the additive bias field s is constrained into the set
SVo(R2) ={s € BWp(Q) : s(x) < k — kg for Vx € Q},
for some k > kg > 0 to ensure that In(7T'(x + u(x)) — s(x)) is well-defined. Here, BV;(2) =
{m € BV (Q) : m(x)|xean = 0} and the space BV (Q2) is as defined in [30].

Remark 1.1. By letting m(x) = 1, s(x) = 0, one can notice that the model (1.2) is reduced
o (1.1), which means that the model (1.2) is much more general than the model (1.1).

Remark 1.2. By setting m(x) = Inm(x) for some positive function m(x), then S;.(u, m, s)
from (1.2) becomes

(1.7) Spo(u,m, 5) = /Q (m T(X:_;L&(;%)(;)S(x)>2dx.

That is, the problem from (1.3) arginf S;.(u,m, s) is equivalent to arginf S.(u,m,s) in (1.2).
By using (1.7) as the data fidelity for (1.3), it has two advantages: (i) transforming the
multiplicative bias field into additive bias field; (ii) eliminating the positive constraint m(x) >
0 in the definition of S.(u,m,s). In addition, by using S;.(u,m, s) as the fidelity data, the
final matched image for (1.3) should be calculated as T,.(-) = M.

em( )

Based on the model (1.3), in this paper, we propose a multiscale approach for joint image
registration and intensity correction, which aims to find the global minimizer of Si.(u, m, s) on

A xCq x SVy(Q) for some given K, K (see Section 2 for details). That is, inf
(u,m,s)EAXCqxSVy ()

Sie(u,m, s). This is so called ‘greedy problem’ for joint diffeomorphic image registration and
intensity correction, which searches for the global minimizer of the similarity S;.(u,m,s) by
placing the regularization into the constraint set A x Cq x SVy(€2). The main contributions
of the proposed multiscale approach contain the following three aspects:
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MULTISCALE APPROACH FOR MODEL JOINT REGISTRATION AND INTENSITY CORRECTION 5

e Propose a novel joint model for image registration and intensity correction;
e Address the greedy problem for joint image registration and intensity correction;
e Eliminate the intensity inhomogeneity by removing the bias.

The rest of this paper is organized as follows. In Section 2, we propose a multiscale
approach for (1.3) to address the ‘greedy problem’. In Section 3, an ADM method to solve
the joint model for each scale is discussed and the convergence is also proved under some
suitable assumptions. Then in Section 4, we propose a coarse-to-fine strategy for the multiscale
approach to further accelerate the algorithm. In Section 5, some applications of the proposed
multiscale approach are performed. Finally, we conclude our work and outline some problems
for future research in Section 6.

2. Multiscale approach based on the model (1.3) and related greedy problem. Mesh
folding may occur in large deformation registration. To control the mesh folding in large
deformation registration, one can decompose the large deformation ¢,, into the composition
of several small deformations ¢;(i = 0,1,2,---,n), where ¢, is the deformation induced by
the joint model ( 3) under different scale parameters \; and g;. For example, by setting
Ai = Ao xa’, gy = % with a > 1, the parameter sequences {\,,} and {e,,} is initialized by some
large number )\g and positive small number ¢ (i.e, Ag = 3000, €9 = 0.01). In this way, the
large diffeomorphism is achieved. Motivated by this idea, we propose the multiscale approach
based on the model (1.3), to give an answer to the question of whether or not one can find
the global minimizer of Sj.(u,m,s) on L(Q2) = A x Cq x SVp(€2). The multiscale approach is
divided into the following n steps:

Step 0. Searching for the solution of the following variational problem:

(2.1) (ug,mo, s0) € argmin  Jo(u,m,s),
(u,m,s)€Le, ()

where Jo(u,m, s) = Ao [(m(x)+1In D(x) —In(T(x+u(x)) —s(x)))?dx+pR(a,m, s), Lo,(Q) =
(A(Q) \ B, (2)) x Ca x SVp(£2) and ¢ > 0. Define ¢y(x) = ¢g(x) = x + ug(x).
Step 1. Searching for the solution of the following variational problem:

(uy,0mq,081) € arg min Ji(a,m, s),
(u,mo+m,so+s)€Ley ()

where Ji(u,m, s) = )q(f Emo(x)—l-m( X)+1n D(x) — In(T o py(x +u(x)) — s0(x) — 5(x)))%dx +

uR(a,m,s), L, (2) )\ B, () x Cq x SV(2) and €1 > 0. Define ¢, (x) = x + u1(x),
P1(x) = pg 0 901(X)’ m(x) = mo(x) + dma(x) and s1(x) = so(x) + ds1(x).

Step n. By induction, for n > 1, searching for the solution of the following variational
problem:

(2.2) (y, Omy, dsy) € arg min Jn(u,m, s),
(ump—1+m,sn—1+8)EL:, ()

This manuscript is for review purposes only.
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where J,(u,m,s) = Ay [o(mp—1(x) +m(x) + InD(x) —In(T o @, 1 (x + u(x)) — sp-1(x) —
5(x)))2dx+puR(a,m, s), Le, (Q) = (AQ)\B., (2)) xCq x SVp(Q) and &, > 0. Define ¢, (x) =
X+ U (), B (%) = P10 P (), M) = o1 () + 011 () a0 50(X) = 1 (%) + 850 (x).

Note that here the final deformation @,,(x) = ¢y o0 ¢; o -0 ¢, (x), which implies that
the multiscale approach (2.1)-(2.2) can simulate the large deformation well even if ¢,(i =
0,1,---,n) is small deformation. In addition, there are two key parameters Ay,e, in the
multiscale approach (2.1)-(2.2). These parameters determine whether or not one can find the
global minimizer of Sj.(u, m,s) on £(€). In practice, A, and €, are set to be large number and
small positive number, respectively. However, it is still not enough. In order for the multiscale
approach (2.1)-(2.2) to solve the greedy matching problem well, we shall give more precise
condition shortly (see Theorem 2.5). Before that, concerning the existence of the solution for
(2.2), we have the following result.

Theorem 2.1. Assume maé<|T(x)| < M < +o0, maé(|D(x)] <M < 400 and Ap = {x :
xXE Xe
T(x) is discontinuous at x} is a zero measure set, then there exists at least one solution for
(2.2).

Proof. By selecting a minimizing sequence {(u¥, §mF¥, §s*)} of the functional .J,, (u, dm, &),
one can conclude that u®, dm”* and §s* are bounded on [H*(Q)]?, BVy(Q) and BVy(Q),
respectively, due to J,(u,dm,ds) < J,(0,0,0).

Firstly, by the compactness of H*(2), there exists a subsequence of u” which are still
labelled by k and u € [H%(Q)]? such that u* weakly converges to u with R;(u) < lem

inf R1(u¥). By the compact embedding theorem (Theorem 4.58 in [9]), we know that H§/(2) <
C'(9Q). Namely, there exists a subsequence of u* which are still labelled by k and u € [C(€2)]?
such that u”* converges to @ in [C1(Q)]2. Moreover, by the uniqueness of the limitation, we

get @ = u. That is, u” . uin [C(Q)]2. Therefore, we conclude u € A(Q) \ Be, (2).
Secondly, by the compactness on BV (Q), there exists a subsequence of §m* which are still
labelled by k and dm € BV (Q) such that §m* weakly converges to dm with

(23)  [l6m* — dm] p1iq) — 0 and / Vomk - pdx — / Vom - dx, Yo € C5(Q),
Q Q

where the first equation in (2.3) implies m,_1 + ém € Cq and the second equation in (2.3)
. . k k
implies Ra(m”) — Ra(m).

Similarly to the analysis on émF, one can conclude that there exists a subsequence of §s*
which are still labelled by k and ds € BV (Q) such that §s* weakly converges to ds with

(2.4) |0s* — sl L (o) *50 and/ Vst - pdx LN / Vis - pdx, Vo e Ci°(Q),
Q Q

where the first equation in (2.4) implies s,,—1 +dm € SV((£2) and the second equation in (2.4)
implies R3(ds*) *, R3(ds).

Finally, by [[u* — ul[jc1 gy —= 0, [|6mF — m|| 1) — 0 and [|6s% — 85|11y — 0, we
obtain [;,(mu—1(x) +dm”*(x) +In D(x) —In(T 0 @, _; (x +u*(x)) — s,_1(x) — 6s*(x)))2dx LN

This manuscript is for review purposes only.
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MULTISCALE APPROACH FOR MODEL JOINT REGISTRATION AND INTENSITY CORRECTION 7

Jo(mn—1(x) + ém(x) + In D(x) — In(T o @,,_; (x + u(x)) — sp—1(x) — ds(x)))?dx. Note here

we use the fact @,,_; € [C1(Q)]?, which implies that T o @,,_;(-) is continuous except for on

some zero measure set. Therefore, J,(u,dm,ds) < klim inf J,,(u”, 6mF¥, 6s*), which ensures
—00

the existence of solution for (2.2). [ ]
Then recall some important lemmas in [20], which are necessary for the proof of the
convergence of the multiscale approach (2.1)-(2.2).

Lemma 2.2. Assume £,g:Q — Q, W(f) =f —1 and I is the identity mapping, then there
holds
(i) IFW(E) € A©)\
(i) If W(F) € A(€) \
(111) Assume W( ) €
CiRi(g™") Jo f(y
Lemma 2.3. Assume p( ) x + u(x) and W(q) € A(Q) \ B:(QQ), then there exists a
constant Co such that Ri(W(poq)) = 2(Ri(W(q)) + CoR1(q ) Ri(W(p)))-

Lemma 2.4. Assume ¢p(x) = x+u(x), g(x ) = 1(x) =x+v(x) and u,v € A(Q)\B:(Q),
then there exists a constant Cs such that Ri(u) = [, [|[V*u(x)||*dx < CsR1(g)R1(W(g)).

Based on these lemmas, we are now ready to give the result on the convergence of the
multiscale approach (2.1)-(2.2).

By setting m =0, s =0 and u = 0 , it follows from J, (u,, dmy,,ds,) < J,(0,0,0) in (2.2)
that

B, (), W(g) € A(Q) \ B, (), then W(f o g) € A(Q) \ Be,e, ().
B.(Q), then there exists g = f~1 € A(Q).
( )\B6 (Q2), then there exists a constant Cy such that [, f(g(x))dx <

)\nSlTé(unv M, sn) + MR(una 5mn, 5571) < )\nslréil(un—lu mp—1, Sn—l)’

where SJ (W, mn, 55) = [o(mn(x) + InD(x) — In(T o @, (x) — sp(x)))*dx and R(0,0,0) = 0.
Hence, S}'(uy,, My, sp) is a decreasing sequence with lower bound, whose limitation is defined
by

(2.5) 0= ngg—loo Sie(Wy, My, Sp).
Define

— In(T(x + u(x)) — s(x)))%dx.
(2.6) 6= ot [ (00 + 10D — T+ ux) - ()P

By proving § = ¢ under some suitable assumptions, we can give an answer to the problem of
whether or not one can find the global minimizer of S;.(u, m, s) on a proper set £(2) = A(£2) x
Ca x SVp(Q). Note (1.4)-(1.6) implies A(Q) C [H§ ()], Cq € BV(Q) and SVy(Q) € BV (Q).
This ensures the greedy matching problem (2.6) is well regularized.

Theorem 2.5. Let ¢,,, @,,, Mn and s, be induced by the multiscale approach (2.1)-(2.2), and
assume that B = B(Q2), M and \,, are three positive numbers satisfying lirf w =0
n—-+0o0 n

and lim &, = 0, where M is a positive number depending on ug, dmg, dsg, 2, a and ¢.
n—-+4oo

Then there holds ¢ = 6.
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Proof. It is obvious that 0 > ¢. To show ¢ < ¢, we use contradiction.
Assume 0 > ¢, then there exists a C1 € (0,1) such that ¢ < C16 < 6. By the definition of
¢, there exists @(x) = x + u(x) € A(Q), m € Cq and 5 € SV(Q2) such that

(2.7) |lm+InD —In(Top— S)HLQ < (1.

Setting ¢ = cfo;il o@, m=1m-—my_1, S =35 — S,_1, by Lemma 2.2, we obtain ¢ € A(Q),
Mmp—1+m € Cq and s,—1 +s € SVp(Q2). By (2.2), (2.5) and (2.7), there holds

An / (17 (x) + In D(x) — In(T 0 p,,(x) — 3,(x)))%dx + pR(u,, 5m,, 5s,)
Q

@8 <lm D~ (T 0@ — )30y + HROV(@;, 0 @), — M1, 8 — 1)
<AC18 + pROV(@,1 0 @), — Mi—1,5 — Sn_1).
Then by (2.8), we further have

(2.9) (1= C1)0 + pR(ay, 6my,, 8s,) < uROW(@, 1 0 @),m — mp_1,5 — 5,-1)

and
(2.10) R(uy, 6my, 65,) < ROV(@, L 0 @), — my—1,5 — 85-1).

Recall R(u,m,s) = Ri(u) + Ra(m) + Rs(s). Based on the inequality |a + b < |a| + |b]
and the fact m,_1 = mu_o+ dmp_1, Sp—1 = Sn—2 + d8,_1, we obtain

(2.11) Ro(m—mp—_1) < Ro(m—myp_2)+Ra(dmp—_1), R3(5—sp—1) < R3(5—sp—2)+R3(dsp—1).

To estimate Ry(W(@,, ', 0 @)), by Lemma 2.3, we obtain

(212)  RIW(@,t 09)) <2RIW(@, 509)) +2CR1((&, 50 2) ) RIW (0, 14)),

where we use the formula cfogil op= gor_il o ¢;E2 op= ‘Pr_il o (@;EQ o @). Concerning the
estimates on Ry (¢, 5 0@)"!) and Ri(W(g,!,)), we have

Ri((@,1500) ") <2Ri(x) + 2R (W((@, 50 2) 7))
<& R,y 0 @) RIOV(@, 50 @) + é
<ERIW(@, 150 @) + @R (W(@,150@)) + &
<BIM*(Ri(W(@;,1509))))

(2.13)

and

Ri(W(p, 1)) SCRi(OW(@,, 1)) Rile, 1)
(2.14) <CRi(W(p,_1))(C+Ri(W(p, 1))

<BoM?*(RiW(@, 1)),

This manuscript is for review purposes only.
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MULTISCALE APPROACH FOR MODEL JOINT REGISTRATION AND INTENSITY CORRECTION 9

where for any & > 0,

1, 0<¢<,

M(f):{g, £>1.

Here the first and third inequality in (2.13) are based on the fact that f(x) = x+W(f) for any
deformation f, and the second inequality in (2.13) is based on the conclusion R;(W(g™!)) <
CRi1(g)R1(W(g)) in Lemma 2.4. Hence, by (2.12), (2.13) and (2.14), we get

(2.15) RiW(@,1109)) < 2R1(W(;,1509)) + BM*(Ri(W(p, 1) M (Ri(W(2,,2509)))-
Furthermore, by (2.10), (2.11) and (2.15), we have

(2.16)
R(W(Qb:zil 0 P), M —Mp_1,5 — Sp—1)
§2R(W<¢;i2 © @), M — Mp_2,5 — Sn—2) + BM4[R(W<S~0;i2 © @), M — Mn_2,5 — Sp—2)]
<BMUROW (@325 0 @), — Ma2,5 — 50-2)
<...
<B" P MY [RW(@, ' 0 @), — mo, 5 — s0)].

Define M & M[R(W(@,  o@), m—mg,5—s0)]. By (2.9) and (2.16), we then obtain 1—C; < 0
as n — +o00, which contradicts Cy € (0,1). Therefore, 6 = ¢. [ |

Remark 2.6. By Theorem 2.5, the multiscale approach (2.1)-(2.2) provides a solution to
the following ‘greedy problem’:

217 inf Sie(u,m, s).
(2.17) L 1e(u,m, s)

Here a key point is that the regularization in (2.17) is reflected on L£(Q2). Otherwise, the
trivial solution (i.e., u = 0, m = %, s = 0) may occur. In our method, some constraints
(i.e., u € A(Q), m € Cq, s € SVp(R2)) are additionally added in (1.4)-(1.6). Compared with
the greedy problem in [20] that has nothing to do with parameters, the result of the greedy
problem (2.17) is affected by two parameters K; and K». In applications, a practitioner needs
to give some estimates on the intensity of varying illumination and set suitable K7, K» (i.e.,
K1, Ky are suggested to be set near zero if no varying illumination in image pairs), then the
multiscale approach (2.1)-(2.2) can work well to produce some expected solutions.

3. Alternating direction method for (2.2). In this section, we mainly focus on the numer-
ical implementation of the proposed multiscale approach (2.1)-(2.2) with A, and &, chosen
by Theorem 2.5. To address the non-convexity of Sj.(u,m,s), an auxiliary variable v is
additionally introduced and (2.2) is reformulated as follows:

(3.1) (Vi, Wp, Oy, 08y, € arg min E.(v,u,m,s),
(v7u,mn_1+m,sn_1+s)ezsn ()
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where E,(v,u,m,s) = Ay [q(ma—1( )—l—m( )+InD(x)—In(To@, 1(x+v(x)) — sp_1(x) —
5(x)))2%dx + pR(u,m, s) + OR.(u) —1—29 fQ\v—u| dx, L, (Q) L( )% L., (), 6, >0isa

small number, © > 0 is a large number and R.(u) = [( g:i g 2+ (g%j; + ng )2dx.
Then setting an initialization v = 0, u¥ = 0, om0 =0, §s % = 0 for some given scale n,
(3.1) can be split into the following four subproblems:
(3.2) vitl e argmin B, (v,uf, émk 655,
ve[LA(Q)]?
(3.3) k+1 € argmin E,(v k+1, u, 5m,’2, 58,’2),
ue[Hg (Q2)]?
3.4 omftl = argmin  E,(vFtl u k“ ,m, 63
( n g n
mn—1+m€CQ
3.5 osPt = argmin B, (vFT uft, (5mk+1 s),
n g n n
Sn—1+s€SVH(Q)
for k=0,1,2,-
Concermng the convergence of (vE, uf dmF §sF), here, we assume o > 3.5 for the technical
demand to ensure ¢ € [C?(Q2)]. Before showmg the convergence result, we give some lemmas

for subproblems (3.2)-(3.5), which will be used in the later proof.

Lemma 3.1. Suppose a > 3.5, T(-) is twice differentiable with esssup |T(x)| < M < +oo,
xe)
v (k—ko)?
ess)s{1€18|D(x)\ < M < 400, 0 < 0, < O T ess)s(1€18|VT(x)] < M < +co and
esssup|V2T( )| < M < +oo, where M 2 M(Q,a) = 2C|Q|[K? +In?*(M/x)?] > 0, K =

max{]Kﬂ |K2|} and C = C(Q,«) is a positive constant (see Lemma 3.2 and Lemma 3.3
in [16] for details). Then for subproblem (3.2), there exists a constant ¢ > 0 such that

VT op, 1(x+ VZ+1>

(3.6)  — 2\ (my—1 +mE +1In D — InTH) R

1

o (vl ) =0
0,

and

E”l(vﬁv ufw 5mﬁ7 58561) - En(vflJrl? ufw 5m1127 537]3) > CHVfL+1 - v?ﬁH[QLQ(Q)P'

Here and in what follow, TF' =T o @, 1 (x + vt — s, 1 —dsk.

Proof. The first-order variation of (3.2) is

VvT 0 @,y (x + vith)
Tk+1 - Z(X
n

1
+ / (vEH —ub) . z(x)dx = 0,
On Jo

-2\, / (Mmp—1 + mfl +InD —In T,]fﬂ)
(3.7) ¢

where z is the test function. By the variational principle, this concludes (3.6).
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Letting z = vk — vF*+1 in (3.7), it yields,

VT 0@y y(x+ Vi)

L(vF vkt = /Q(—2/\n(mn_1 +6mF +InD — InTHH)

n? Tﬁ+1
1
+ ?(VZ‘H —ub)) . (vF —vFhax = 0.
n
Then we have
(3.8)
En,(vE uk omk 6s5) — E,(vETL uf omk, 6sF)
To@, 1(x+ vl — s, 1 —dsk
=An 1 L (2mp_1 +20mk +2In D — 2In T t!
/ Top,_ l(x—l—v)—sn_l—ésk‘ (21 +20my, +21n Hin
k+1
—HnTO(Pn 1t vy - )~ #nt _6: / k+1 (V +vk+1 2u§)dx,
To@, 1(x+vE)—s, 1 —dsk 20

By using the Taylor’s formula, we get

(3.9) I(Top, 1(x+vEth) —s, 1 —6sF) =In(To @, 1(x+vE) —s, 1 —ds%) + A+ B,

_ WWTo@, o (AVE) (VT VE) ok kel k_ ykt1yT -
where A = To¢nj1(x+vh)”_sn:_585 , B = (v —vitHH(o)(v) — )*, and H(o) is the
k’—i—l

Hessian matrix of function In(T'0@,,_1(x+VvE) —s,_1 —dsk) on point o between v¥ and vF

Hence, by (3.8) and (3.9), there holds
E,(vE uk omk 6sk) — B, (vET ub omE 5sh)
>An / (A+ B)?dx + ||Vt = vl fa e + LOVE, Vi) = e[Vt = vl e
Q
o
where ¢ = ﬁ —cop>0and ¢y = [[H(0)| pe) = % (see Appendix A for details). H
Lemma 3.2. For subproblem (3.3), there holds
(3.10)
k+1 Juktl ouwktl  gwkt
9 o k+1 awd 2@/ o n,2 . 1 o 2 d
'u/ Viu Viwdx (9.1‘1 (9.%'2 8351 81‘2 x
k1l g,k owktl gkt 1
20 n,2 . 1 2 d—/ k1 gkt wdx = 0
+/<8x2 8x1><8w2+8$1 X gy Jon ) =0,
for any w € [C§°(Q)]?, and

En(Vg+1, ufw 5mlr€w 55{;) - En(vf;z+17 ufz—i_l? 5mfr€zv 682) > 61”qu +1 || H"‘(Q)]%

for some c¢; > 0.

This manuscript is for review purposes only.



325
326

328
329

330

333
334

335

337

338

JOI)
o
-

341

12 PENG CHEN, KE CHEN, HUAN HAN AND DAOPING ZHANG

Proof. The first-order variation of (3.3) is

k+1 aukJrl awk—f—l awk—H
9 « k+1 « 9 / _ n,2 . 1 _ 2
'u/ Viu FViwdx £ 20 (9.1‘1 8.%'2 8301 8.%'2 dx

BHL gkt JwEtl Gkt 1
20 n2 . 1 2 d _/ k1 Gk 1) wdx = 0
+ /(axg Dy ) ( o, T on ) X g, J,vn ) wdx =0,

)T

where w = (wy,wz)" is a test function. This concludes (3.10).
Letting w = u* — u**!, then there holds

Elu ) =2 [ Vvl - s o [ (v o - ax
k+1 a k+1 8’&
120 / ( o ) ( e ;;) dx
k+1 a k+1 8’&
120 / ( Ly ) ( - ;f) dx
_2@/ <8UZ,+1 (‘MfLEl) dx—2@/ ( uk ! +8“Z’+21>2dx_0.
o\ O0n (93:2 Oxq

Therefore, based on (3.11), we obtain

En(vaH, k 5mk 55’“) —En( ktl k+1,5mﬁ,5sﬁ)
(3.12) >V (ay — w122 + 5 29 lag; — w1 oy + L, up ™)
>er|luy — up | Fe e u

Lemma 3.3. For subproblems (3.4) and (3.5), there hold

. Smbt1
(3.13) 2X\n(my—1 +6mE +In D — In T — pdiv (Iém’““|> =0,

- 1 Vskt!
k+1 k+1 : _
(3.15) En(vﬁ"'l,uﬁﬂ,émﬁ,(;sﬁ) 7En(VZ+1,ufl+1 6mk+1 5sk )> )\n||5mfZ om k+1||L2
and

(3.16) En(VfL+17ufz+1 5mk+1 as, n) — En(vfﬁ'l,uﬁ"'l?émi"'l,ésffl) 2 >‘n||557]i *6Sﬁ+1||%2(§2)a

where TF' =T o @, | (x+vitl) —s, | —dshtL,
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Proof. The first-order variation of (3.4) is

Vémktt. Vpd

k+1 k+1
2)\n/9(mn1+5mn +InD—InT)"™) - pdx + p |V5mlfL+1|

where p is the test function. By using the integration-by-parts formula [13], we get (3.13).

Letting p = 6mF — dm”r+1, we have

n

L =2, / (1 + om0 D — I TEH - (Smk — sml ) dx
Q

dx = 0.

n / VomkEtl . v(6mk — smk+1)
. VomEtT|

Then we obtain

En(vﬁﬂ, k+1 (5mk (552) —En(vffl,uﬁJrl 5mk+1 ok )

>Anldmy; — dmy [ Tagq) + L = Anlldmy, — 0my | s ).

Further, by giving similar analysis on subproblem (3.5), we conclude (3.14) and (3.16). l

Now, based on Lemmas 3.1-3.3, we can give a convergence result of the sequence {(v¥, u®,

Sm, 055)}.

Theorem 3.4. Suppose that the conditions in Lemmas 3.1-3.3 are satisfied. Then the se-
quence {(vE uk omk §sE)} generated by (3.2)-(3.5) converges to the solution of (3.1) when
k — +oo.

Proof. First, we claim that there exists (vy,, U, dmy, ds,) € [L2(Q)]? x [HH(Q)]? x Cq x
SVo(£2) such that

k

n

k
Vn

Feve in 2O, uf Su, in [HIQ)P?,

(3.17) ] ;
omF =5 0m, in Cq, 0sF —4s, in SVH(Q).

By Lemmas 3.1-3.3, we obtain that
E, (Vk uk 5mk 5sk) — Ep(vy k1 u’fLH, 5mﬁ+1,5sﬁ+l)
(3.18) >c|vi - Vk+1||[L2 oz T ey, — ]:L+1||[2H8‘(Q)}2
+ Anlldmy, — Smp ([0 + Aalldsy — 05y 720

Note that En(v,’i, ufl, 5mfl, 55@) is a decreasing sequence with a lower bound, which implies
that the left side of (3.18) converges to zero when k — +o00. Hence, we have,

k k
(3.19) vl — Vﬁ+1||[2L2(Q)]2 =0, [Juy — kHH[H‘* op — 0,

k k k k
||5mn om +1||L2(Q _> 0 ”5877, +1||L2 — 07
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as k — +oco. Then by the compactness of Banach space L?(), H§(Q), there exists (vy,, up,
S, 0sy,) € [L2(Q)]2 x [HE())? x L2(2) x L*(Q) such that

vE v, in [LAQ)2, v u, i [HEQ)Z

n

smk £ 5m, in L2(Q), sk 5 6s, in L2(Q).

In addition, since dm~ is bounded in BV (£2), there exists a subsequence of §mF which are
still labelled with dm¥ and ém, € BVy(Q2) such that

(3.20) |omkE — oMl L1 () LN 0, / VomP - wdx LN / Vémy, - wdx,
Q Q

for any w € C$°(Q). By (3.19), (3.20) and the uniqueness of the limitation for m% there
holds dm,, = dém, € BVy(). So we have m,_1 + 0m, € Cq. Similarly, we also have
Sp—1 + 08y, € SVp(Q2). Therefore, we obtain the claim (3.17).

Next, we claim that (vy,uy, dmy,,ds,) is a minimizer of (3.1).

By (3.6), (3.10) and (3.17), we know that

VT o, 1
(3.21) — 2 [Mp1 + My + In D — In T~ ‘p”Tl(X *Va) | -(vn =) =0
n n

and

u, - VO Ouny _ Dnz, 0z Dz
2M/QV u, -V zdx+2@/ﬂ( oz, Dis ) (8x1 8x2)dx

aun,l 8un,2 821 822 1 .

(3.22)

where T), =T o @,,_1(X + Vy) — Sp—1 — dsp. By (3.13), we also obtain that
2\ [Mn_1 + 0mFt £ In D — In TFFY) 4+ H(omEHY) =0,

k
where H(mEt!) = —udiv(ééﬁgil ). This implies,

H(EmETYY 25 2N [mn1 + 0my +InD — InT,] 2 T.

Note that H is a monotone operator because H is the derivative of a convex functional, which
shows

/[7—[(5m§+1) —H(w)] - (6mE —w)dx >0 V¥ we BV(Q).
Q
Furthermore, there holds

/H(dmﬁ“) - omFtldx LN / T - omydx,
Q Q
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and
/Q H(w) - smFldx s /Q H(w) - Smpdx.
So we get
7= @) G, = whix = 0.
Let w = dmy, + ) for any ¥ € C5°(). Then

/Q[T— H(Smy, + h))] - hdx < 0.

Besides,

/ H (G, + b)) - x5 / H(Gmn) - hdx
Q Q

as h — 0. Therefore,

/ T -dx < / H(dmy,) - Ydx.

Q Q

So we have H(dm,) =T and

(3.23) 2An[mp—1 + émy, +In D — InT,] + H(dm,) = 0.

In a similar way, there holds,
1
Ty

Vs, )=
|Vésn|”

(3.24) 200 [Mp—1 4+ 6my +1InD — InT, | — — pdiv(
Then by (3.21), (3.22), (3.23) and (3.24), we conclude that (v,,u,,dm,,ds,) is a minimizer
of (3.1). [ ]

At the end of this section, we focus on the numerical implementation of the subproblem
(3.2)-(3.5). For some given domain = (0,a) x (0,a) and scale number n, we define h = -
for some given Ng € NT. Here, we also define (z1); = ih, (z2); = jh for 4,5 =0,1,2,--- | Ng
and Pl,] = ((xl)iv (332)]) for Z’] = 07 17 27 e 7N5"

v-problem: Define 7(v) = m,_1 +émF + InD —In(T o @,,_1(x + V(X)) — sp,_1 — 65%).
By using the Taylor’s formula, there holds

(3.25) r(vith) = r(uy) = L (vt —up),
where LF = (L, L,)" = To¢n,1(x+u§%x))—sn71—ésﬁ VuT 0@, 1 (x+uk(x)). Substituting (3.25)

into (3.2), we obtain the following Euler-Lagrange equation for (3.2):

(3.26) GvFtl = ¢(uh), Vx €,
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where
G- < 1+ 2X\—16, L2, 2X\,_10,L, L, ) SR e
2M-10nLeLy, 142X\, 10,17 )7 " opst )
¢(uk) — ( Ufh + 2)‘n—19n[r(uﬁ)l’m + L:%:ufn,l + LILyuZ,Q] >
n uﬁz + 2)\n_19n[r(uﬁ)Ly + LmLyquJ + Lzufw] ’

and uf £ (uf |, uf ;). By solving the linear system (3.26), one gets the updated vi*! for
each x € (2.

u-problem: Based on the updated vi*!, the Euler-Lagrange equation for u from (3.3) is

formulated as follows:
(3.27) 20, dive* (VOuh ) — 200, Ault! 4 uft! = yi+l vx € Q.

Concerning the numerical computation of (3.27), the multigrid method is used to accelerate
the algorithm. The details of the multigrid method for (3.27) are listed in Appendix B.

m~problem: By ignoring the constant term, (3.4) is essentially equivalent to the following
convex optimization problem:

1
(3.28) omrt! = argmin / lg — m|?dx + K / |Vml|dx Vx € Q,
Mp—14meCa 2 Ja 2Mn-1 Ja

where g(x) = In(T o @,,_1(x + vFT1) — 5, 1(x) — 65%(x)) — mp_1(x) — In D(x). Without
the constraint K1 < m < Kby, (3.28) is essentially a standard form of total variation (TV)
minimization. The solution of (3.28) (without constraint K1 < m < K3) is,

(3.29) m =g — Pk (9)-

Note that here and in what follows, P4(v) denotes the element in A which minimizes the
distance between v and all the elements in A. Here we use the Chambolle Projection algorithm
[2] to compute Prg(g). By giving the initial value p® = (0,0), 0 < 7 < % and the following
iterative sequence

1 _ P ATV (divp' —g/A)iy
W 14 7| V(divp! — g/N)ij]

Adivp! — Pk (g) with I — 400 [2]. Then, based on (3.29), we get the solution of (3.28) by
projecting the solution of (3.29) onto the set Cq:

9 — Pax(9))ij, Ki<lg—Prk(9)i; < Ko,
(3.30) (BmEt) ;=19 K1, 9= Pax(9)liy < K1,

Ky, [9—Prr(9)li; > Ko,

fori,7=0,1,2,---, Ng.
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s-problem: Define G(Q2) = {s € BVj(Q)|s(x) < k—ko—Sp—1(x) for Vx € Q}. Then G(02)
is a closed and convex set. Assume that ds,, is a solution of (3.3). Then for any r € G(Q2),
there holds ds, + 7(r — dsp) = (1 — 7)dsp, +7r € G(2) for 0 < 7 < 1. Next, we define
J(1) = Ep(vETL bt smEtL §s, + 7(r — 8sy,)), which yields

J(0) < J(1) vr € [0,1].
Therefore,

(3.31) 0<J(0) = / F(dsp) - (r—dsp)dx, forVreg,
Q

22 (Mi—14+0mET 4 In D—In(To@,,_ (x+vEt)—s,_1—8sn)) . ( Vs )
wher = — pdiv o). N h
ere F(0sy) ST S — ud Vose] ote that

F is a monotone operator [22] and (3.31) is equivalent to ds, = Pglds, — oF (dsy)], which
induces the following iterative method for (3.3):

(332) 58'ln+1 = ,Pg[(ss'ln - Q]:((SSZ)], l= 07 17 2a )

with ¢ > 0. Concerning the projection in (3.32), it is essentially to solve the following
optimization problem:

(d551)iy = argmin [[3s), — oF(dsy,))ij — wis*,
2,

subject to w; j < K — ko — (Sp—1)i,; for i, =0,1,2,--- , Ng. That is,

[0, — 0F (5s)ijs  [08h — 0F (sh)]ij < & — Ko — (5n-1)ij,

Kk — ko — (Sn—1)ij, (05, — 0F (8s4)]ij > & — Ko — (Sn—1)ij,

(3.33) (6sht1); ;= {

fori,7=0,1,2,---, Ng.

To summarize, the ADM algorithm for solving (3.1) is listed in Algorithm 3.1. Further-
more, based on Algorithm 3.1, we propose Algorithm 3.2 to implement the multiscale approach
(2.1)-(2.2), which will be refined next based on the view of the multi-resolution.

Algorithm 3.1 ADM for (3.1)
Initialization: k¥ =0, u? =0, v0 =0, m? =0, s¥ = 0, Q and maximum iteration times K.
while £k < K
Step 1. Update vET! using (3.26);
Step 2. Update uf*! using (3.27);
Step 3. Update émF*! using (3.30);
Step 4. Update §st+! using (3.33);
Set k=k+1;
endwhile

Output: u, = unK,vn = vff,cSmn = 5mf, 5s, = dsK

n -
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Algorithm 3.2 Multiscale algorithm for (2.1)-(2.2)
Initialization: n =0, u? =0, v =0, 6m? =0, s =0, A\, 0, (n =0,1,2,--- ,N), © and
maximum scale N.
while n < N
Step 1. Use Algorithm 3.1 to compute u,, v,, dm, and s, on €);
Step 2. Compute @,,, m, and s, on 2;
Set n=n+1;
endwhile
Output: @py,my, SN.

4. Coarse-to-fine strategy for the multiscale approach. To solve the multiscale approach
(2.1)-(2.2), one needs to iteratively solve the subproblem (3.2)-(3.5) for each scale n (See
Algorithm 3.2 for details). This strategy is not yet efficient. Based on the view of the multi-
resolution, we now propose a modified coarse-to-fine strategy for the numerical implementation
of the multiscale approach (2.1)-(2.2). This strategy contains following two steps (the flow
chart of the proposed coarse-to-fine strategy is shown in Fig 3. Note that here and in what
follows, €2 | 2™ denotes the downsampling of the region §2 with size 2". For example, given
the region Q = (0,128) x (0,128), Q | 2! denotes the region (0,64) x (0, 64)):

- —dN»- R: model (4.2)

%

(T)O(')amo(')aso(')
@, (), (), 5,()

Floating | d... d,,, I Target
mer 0| [ e e
RACIRSE O AT )
On ()ommy (), sy ()
70" L0 Tean0 L0 D

Oy (). my () sy () T » ( ) ( )
) 0§y ()= sy (-
TO(PN(') _ 7:'(') = ]\émN() N

%

Figure 3. The flow chart of the proposed coarse-to-fine strategy for the diffeomorphic image registration
joint intensity correction. Note that here 1 denotes the image decomposition process; R denotes the image
registration process; d denotes the downsampling process.

(I) Image decomposition: To improve the resolution of downsampled images, image
decomposition process is additionally introduced. Here, the decomposition model we used
is the canonical multiscale image decomposition model developed by [30,33]. This model is
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essentially the following definite partial differential equation (PDE) problem:

af(X,t) _ p(t)div <5(X)V§(X,t)> , XE Q,t > 0,

i1 ot IVE(x, )]
b £6x,0) = f(x). xeq
£(x,t) [xean= 0, t>0,
where we set p(t) = 1.05%, §(x) = \/1+|V(GL1*f)(x)|2/62’ B = 0.07 and G, is a Gaussian kernel

with a small standard deviation ¢. By choosing N + 1 different time points 0 = tg < t; <
.-« < ty and setting f = T or f = D, we obtain the image decomposition results: TV, TN=1,
<o, T% and DV, DN=1 ... DO respectively. Concerning the numerical implementation of
(4.1), one can refer to [33] for details. Therefore, we downsample the decomposed images
7"(-),D"(:) (n =0,1,2,--- ,N) with size 2" to obtain the downsampled images 7). (-) and
D7 (-), respectively.

(IT) Image registration: The coarse-to-fine strategy for a multiscale approach of prob-
lem joint image registration and intensity correction model is divided into the following N + 1
steps, here and in what follows, €, = Q | 2V ""(n=10,1,2,--- ,N):

Step 0. By taking 7% (-) and DJ/(-) as the floating image and the target image, respec-
tively, we solve the following variational problem on :

(4.2) (ug, dmg,dsp) €  argmin Jo(u,m, s),
(u,m,s)€Le, (Q0)

where Jo(u, m,s) = Ao Ja, (m(x) +1n DY (x) — In(TH (x + u(x)) — s(x)))%dx + pRa,(u,m, s),
Ly (20) = (A(20) \ Bz, (©0)) x Cay x SVo(20) and €9 > 0. Rgq,, (u,m, s) is defined by replacing
Q with ©,, in (1.3). Define ¢y(x) = ¢o(x) = x + up(x), mo(x) = 0mp(x) and so(x) = Jsp(x)
for each x € (.

Step 1. Scale ¢y(x), mo(x) and sp(x) to 1 and solve the following variational problem
on ) (note that here |Q1] = 4|Q|):

(4.3) (uy,0mq,081) € arg min Ji(u,m, ),
(u,mo+m,so+s)ELey (21)

where j}(u,m, s) =M\ le(mg(x) + m(x) + In Dévs_l(x) — ln(Té\Sf_1 o @o(x +u(x)) — so(x) —
5(x)))2dx + pRo, (u,m, s), Le; (1) = (A(Q1) \ Be, (1)) x Cq, x SVo(Q1) and &1 > 0. Define
i) = x- (3 0) = 0= ) m3) = o) s ) a1 3) = )+
or each x € Q.

Step N. Scale ¢n_(x), my—1(x) and sy_1(x) to Qx and solve the following variational
problem on Qy (Note that Qx = Q):

(4.4) (uy,dmpy,dsy) € arg min Jn(u,m, s),
(uymy_14+m,sy_1+8)ELe 5 (AN)
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20 PENG CHEN, KE CHEN, HUAN HAN AND DAOPING ZHANG

where Jy(u,m,s) = A\, fQN (my_1(x)+m(x)+InD(x) —In(Topy_;(x+u(x)) —sy_1(x) —
5(x)))2dx + puRq, (u,m, s), Loy (Qn) = (AQN) \ Bey (Qn)) X Cap x SVo(Qn) and ex > 0.
Define @y (x) = X + uy(x), @n(X) = @y_y 0 @y (X), my(x) = my-1(x) + omy(x) and
sn(x) = sy—1(x) + dsn(x).

To show the convergence of the proposed coarse-to-fine strategy, we introduce some no-
tations. In the coarse-to-fine strategy, one needs to scale the functions ¢ : Q, — Q,,
m* . Q, - R, s :Q, - R and u*> : Q, — R to the functions w0 — Q
m:Q =R, s:Q— Rand u:Q — R, respectively. By the principle of scaling, there holds
o(y) = % (53), uly) = 2V (), mly) = m® (5), and s(y) = s (7)),
where y € Q and x = y/2V " € Q,,. Here, functions fq, (f = ¢, m,s,u) denote the version
of the function f on the domain ©,. In addition, there also holds T}, (57 ) = T(y) and
D3 (535) = D(y).

Based on these notations, we have the following results.

Theorem 4.1. For any n < N — 1, the coarse level registration problem

(4.5) (Ut omitn 5siin) e arg min E,(u™ m
(uﬂn 7mﬂn 75917, )Eﬁfn (Qn)

s equivalent to the following variational problem

(4.6) (up,dmy,ds,) €  argmin  E,(u,m,s),
(u,m,s)eLe,, ()

where Ep(u,m, s) = Ay fa, (m | (x) +m (x) +1In DY~ (x) —In(TH " 0@ (x+un(x)) —
sgﬁl(x) — sfn (x)))%dx + pRq, (uQ", mn SQ”), E,(u,m,s) = gN-n) fQ(mn_l(x) + m(x) +
In Dé\g_"(x) - ln(Té\Sf—" 0@p_1(x+u(x)) —sp_1(x) — 5(x)))2dx + pu(R1.0(u) + 2V " (Ry g (m) +
R3a(s))).

Proof. By letting y = 2V ""x € Q for any x € Q,,, we get

En(uQ" , mQ", sQ")

1 -n -n .~
= /Q(mn—l(Y) +m(y) + Dy 7" (y) = In(Ty ™" 0 @, 1 (y + u(y))
— sn-1(y) — s(y)))*dy + 165% (Ri,0(u) + 27" (Ro0(m) + Rz 0(s)))-
Therefore, (4.5) is equivalent to (4.6). [ ]

By Theorem 4.1, the variational problem (4.2)-(4.4) on each coarse grid is equivalent to
the following variational problem

(4.7) (up,0my,ds,) € argmin  E,(u,m,s), n=0,1,2,--- N.
(u,m,s)€Le,, ()

Then based on Theorems 4.1 and 2.5, we give the following convergence result of the proposed
coarse-to-fine strategy (4.2)-(4.4).
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Theorem 4.2. Let @,, and my, s, (n=0,1,2,--- , N) be induced by the multiscale approach
(4.2)-(4.4). Assume three large numbers B = B(2), M , Ax satisfy lim BU M

n—N_,N—+o0 AN=m A,
0, where M is a positive number depending on ug, dmg, dsg, 2, a and ¢. Then there holds
¢ =9, i.e., the modified coarse to fine strategy (4.2)-(4.4) is also equivalent to the original
greedy matching problem (2.17).

Proof. Based on 4.1, we can transform the variational problems (4.2)-(4.4) into an equiv-
alent problem (4.7), which is defined on 2. Based on (4.7), one can notice that (4.7) is
equivalent to (2.2) with n — N_. Therefore, we can use Theorem 2.5 to show ¢ = 4. [ ]

Based on Algorithm 3.1, the proposed coarse-to-fine strategy for the multiscale approach
(4.2)-(4.4) is summarized in Algorithm 4.1.

Algorithm 4.1 Coarse-to-fine algorithm for the multiscale approach (4.2)-(4.4)
Initialization: n =0, u =0, v) =0, m% =0, s =0, \,, 0, (n =0,1,2,--- ,N), © and
maximum scale N.
I: Image decomposition:
Solve the image decomposition model (4.1) by setting f =T and D to obtain the decompo-
sition result; Downsample the decomposed images T", D™ (n =0,1,2,--- , N) with size 2" to
obtain the downsampled images T, (-) and D (-), respectively.
IT: Image registration:
while n < N
Step 1. Use Algorithm 3.1 to compute u,, v,, dm, and s, on €2, and replace
T(-), D(-) with TS]g_”(-), Dé\é_"(-), respectively;
Step 2. Compute @,,, my, and s, on Q,;
Step 3. Scale the definition of ¢,,, m, and s, onto a finer domain 2, 41;
Set n =n+ 1;
endwhile
Output: @y,my, sy and T,(+)

_ Topy()—sn()
emn () :

Remark 4.3. Algorithm 4.1 is a multi-resolution modification for the Algorithm 3.2. In
fact, one needs to solve the variational problem on 2 in Algorithm 3.2 while only needs to
solve the same problem on ,(n =0,1,2,--- ,N) in Algorithm 4.1. In fact, |Q,| = 4]\,%”|Q\
This implies the Algorithm 4.1 accelerates the Algorithm 3.2, which will be validated in the
numerical tests in Section 5.

5. Applications for the proposed multiscale approach. In this section, we perform three
different kinds of numerical tests to validate the theoretical results and Algorithms in Section
2-4. The content of this section contains: In Test 5.2, we perform the comparison between
the proposed coarse-to-fine Algorithm 4.1 and M2FDIR in [20] to show that Algorithm 4.1 is
more efficient on addressing the image registration problem with local varying illumination.
In Test 5.3, a comparison between Algorithm 4.1 and Algorithm 3.2 is performed to show that
the proposed Algorithm 4.1 has advantage on reducing the CPU consumption. In Test 5.4,
the proposed Algorithm 4.1 is compared with some state-of-art image registration algorithms,
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like IDFDIM [17], DFIRA [18], LDDMM [24] and FBNE [31]. All the numerical tests are
performed under Windows 7 and MATLAB R2012b with Intel core i7-6700 CPU @3.40 GHz
and 8GB memory. For the quantitative comparison, we choose the following two indexes:
e Relative sum of squared differences (Re_SSD for short) which is defined by
_ SSD(T'(x +u), D)

Re_SSD(T, D, u) = SSD(T. D)

where SSD(T, D) = 3 > (T; — Di;)* ;
1,3
e Mesh folding number (MFN for short) which is defined by

MFN(u) = § (det J(u) < 0),

ox oxo Oxo 01
number of elements in A.

where det J(u) = (1 + %) <1 + @) — 9w 9u and for any set A, #(A) denotes the

5.1. Sensitivity test for parameters )\,, and p in Algorithm 4.1. )\, and p are two key
parameters for Algorithm 4.1. To show the sensitivity for the sequence {\,, } and the parameter
i, the synthetic image pair (pair I) is used as testing data. For pair I, the floating image and
target image are defined as follows:

T(x) = 255xF, (x) + 0.01, D(x) = 255xr,(x) + 180xF, (x) + 0.01,

where Q = (0,128) x (0,128), Ty = {x = (x1,22)7 : (z1 — 65)* + (22 — 65)% < 40%}, [y =
{x = (x1,22)T : (z1 — 65)% + (w2 — 65)% < 202}, T3 = {x = (x1,22)7 : 202 < (x1 —65)* +
(xg — 65)2 < 30%} and x is an indicator function. The original synthetic image pair is shown
in Fig 5.

By setting A, = Ao x 4"(n = 0,1,2,---) and p € [0.01,1000] and Ay € [3000, 5500], we
use the Algorithm 4.1 to perform the registration for image pair I by giving 546 different
groups(only 169 groups are shown on Fig 4 to make the vision more plausible) of Ay and p.
By viewing the final Re_.SSD(T’, D, u) as the heat value, the heat map for A\g and p is shown
in Fig 4.

By Fig 4, we find that the final Re_.SSD(T, D, u) is not affected by the parameters \,, and
w. This validates the fact that the multiscale approach (2.1)-(2.2) provides a solution to the
greedy matching problem (2.17) which has nothing to do with the parameters A\, and pu.

5.2. Comparison between the proposed coarse-to-fine Algorithm 4.1 and M2FDIR
in [20]. To show that the proposed model via (4.2)-(4.4) properly treats the locally varying
illumination, we compare the proposed Algorithm 4.1 with the multiscale M2FDIR in [20],
which does not take the locally varying illumination into consideration.

The test pair in this part contains synthetic image pair I and two brain MRI image pairs
(IT-III) with local varying illumination.

For pair I, One can notice from Fig 5 that there is a shadow on the outer ring of the circle
in the target image D(-), while no shadow appears in the floating image T(-). By using image
pair I, we use the proposed Algorithm 4.1 and M2FDIR in [20] for registration. The final
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(d) () (f)
Figure 5. Comparison on pair I: (a) floating image T(-); (b) target image D(-); (c¢) T o @ (-) in Algo-
rithm 4.1, Re.SSD=6.33%; (d) Tc o @y () in Algorithm 4.1,Re SSD=3.40%; (e) T o @y, () in M2FDIR [20],
Re_SSD=5.14%; (f) mesh grid of the deformation @y (-) in Algorithm 4.1

Table 1
Quantitative comparison between registration results of Algorithm 4.1 and M2FDIR (Test 5.2)

Data Algorithm Re-SSD(%) MFN CPU/s
Pair M2FDIR [20] 5.14 0 321.8
Algorithm 4.1 3.40 0 31.2
Pair II M2FDIR [20] 46.86 0 536.1
Algorithm 4.1 11.82 0 36.1
Pair III M2FDIR [20] 9.91 0 661.3
Algorithm 4.1 3.11 0 43.1
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registration results and quantitative comparison are listed in Fig 5 and Table 1. By Fig 5(f),
one can notice that the proposed Algorithm 4.1 produces a diffeomorphic deformation ¢. It
follows from Fig 5(d) that the registration result of Algorithm 4.1 matches the shadow ring
of the target image D(-) well, while the final result of M2FDIR has trouble in matching the
shadow ring. This shows that the proposed Algorithm 4.1 addresses the image registration
with local illumination well.

(f) (2) (h) (i) 8)

Figure 6. Comparison on pair II (First row): (a) floating image T(+); (b) target image D(:); (¢) T o@y(+)
in Algorithm 4.1, Re.SSD=85.31%; (d) T. o ¢x(-) in Algorithm 4.1,Re SSD=11.82%; (e) T o @y (-) in
M2FDIR [20], Re-SSD=46.86%. Comparison on pair III (Second row): (f) floating image T(-); (g) target
image D(-); (h) To@y () in Algorithm 4.1, Re_.SSD=86.04%; (i) T.o @ (-) in Algorithm 4.1, Re.SSD=3.11%;
() T o @y, () in M2FDIR [20], Re_SSD=9.91%;

For pair II (see the first row of Fig 6), there are two domains which suffer from local varying
illumination on the lower left of the floating image 7'(-), while no illumination appears in the
target image D(-). For pair III (see the second row of Fig 6), there is local illumination on
the right side of the floating image T'(-), while local illumination appears on the opposite side
of the target image D(-). We use Algorithm 4.1 and M2FDIR for pairs IT and III. The results
are shown in Fig 6 and the quantitative comparison result are listed in Table 1.

By Fig 6(e), we see that the registration result on pair II of M2FDIR is disturbed by the
local varying illumination and leads to an unexpected result. In addition, one can notice from
Fig 6(d) that the proposed Algorithm 4.1 addresses the local varying illumination well. This
validates that the proposed Algorithm 4.1 has advantage on addressing the registration with
local varying illumination over M2FDIR. This is also the main motivation for us to study
the problem joint diffeomorphic image registration and intensity correction. Concerning the
comparison on pair I1I, it follows from Fig 6(j) that the registration result is seriously bad in
the region with local varying illumination, while the proposed Algorithm 4.1 can accurately
correct the intensity distortion caused by the local illumination (see Fig 6(i) for details).
This validates the conclusion that the proposed Algorithm 4.1 addresses intensity distorted
registration well.

5.3. Comparison between the proposed coarse-to-fine Algorithm 4.1 and Algorithm 3.2
(without coarse-to-fine process). To solve the proposed multiscale approach (2.1))-(2.2)),
one has two choices: (1) Use the proposed Algorithm 3.2 without coarse-to-fine strategy. For
this choice, one is expected to implement the ADM process (4.2)-(4.4) on Q for each scale
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n. (2) Use the proposed coarse-to-fine Algorithm 4.1. For this choice, one only needs to
solve the ADM process (4.2)-(4.4) on €, for each scale n. Note that €2, is a domain smaller
than €2, which indicates that the proposed coarse-to-fine strategy (4.2)-(4.4) has advantage
on reducing the CPU consumption over Algorithm 3.2.

To numerically validate this theoretical result, we perform the comparison between Al-
gorithm 4.1 and Algorithm 3.2. Both these two algorithms aim to find the solution of the
multiscale approach (2.1)-(2.2), where the coarse-to-fine strategy is introduced in Algorithm
4.1, while no multi-resolution based coarse-to-fine strategy is used in Algorithm 3.2. The data
set used for the test are labelled IV-VI. For pair IV, it contains five image pairs which are col-
lected at two different time from one patient (No.1) who suffers from mouth cavity lymphoma.
Similarly, data V and VI contain the same content from some other two patients (No.2 and
No.3). By registering these image pairs, clinicians can extract useful information from the
difference between the deformed image T. 0@ (-) and the target image D(-). Furthermore, by
analysing the difference, some evaluation for the severeness of the tumor is made. Therefore,
the accuracy of the image registration result is of vital importance for the evaluation. In this
part, we use Algorithm 4.1 and Algorithm 3.2 to register these 15 image pairs. The registra-
tion result for IV-VI are listed on Fig 7-Fig 9 and Table 2, where Re_SSD is represented by
the mean value 4+ standard deviation of five different image pairs for each patient, and the
CPU is represented in a similar way.

Table 2
Quantitative comparison between registration results of Algorithm 4.1 and Algorithm 3.2 (Test 5.3)

Data Algorithm Re-SSD(%)  MFN CPU/s
data IV~ Algorithm 4.1 10.67 £2.47 0 385+5.3
Algorithm 3.2 11.19 £+ 3.44 0 518.5 £ 31.9
data V Algorithm 4.1 9.82 4+ 2.47 0 36.1 6.1
Algorithm 3.2 13.16 £ 3.51 0 436.7 £ 35.6
data VI ~ Algorithm 4.1 8.96 + 1.68 0 43.1 £ 3.8
Algorithm 3.2 12.76 £ 0.72 0 621.7 £ 45.6

By Table 2, we see that the registration result of the proposed Algorithm 4.1 is similar to
(though a bit better than) Algorithm 3.2. However, the CPU consumption of Algorithm 4.1
is greatly reduced compared with Algorithm 3.2. This shows the efficiency of the proposed
coarse-to-fine Algorithm 4.1.

5.4. Comparison between Algorithm 4.1 and some other image registration algorithm-
s. In this part, to further validate the efficiency of the proposed coarse-to-fine Algorithm 4.1,
we perform some comparison between Algorithm 4.1 and 1DFDIM [17], DFIRA [18], LD-
DMM [24] and FBNE [31]. For this purpose, we use these five algorithms to match three
different medical image pairs which are labelled with VII-IX. Here, to show the efficiency of
the proposed multiscale approach, VII-IX are kept the same state with data set used in [31].
These three image pairs are introduced as follows. For image pair VII, the floating image
T'(-) contains highly contrasted region in the middle of the region. By viewing the contrast as
bias field relative to the target image D(-), the elimination of this kind of bias field provides a
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Figure 7. Comparison on IV: The first column is the floating image T(-) for each image pair; The second
column is the floating image D(-) for each image pair; The third and fourth columns are the image registration
results of Algorithm 4.1 and Algorithm 3.2 for each image pair, respectively.

strong evidence that the proposed multiscale approach for the variational model joint image
registration and intensity correction has advantage on addressing the diffeomorphic image
with local varying illumination. This is the main reason why these image pairs are selected
for the numerical comparison. The quantitative comparison results for image pair VII are
listed in Fig 10 and Table 3. One can notice from Fig 10 that only the proposed algorithm
and the FBNE in [31] eliminate the bias field in the middle of the region well. The other three
algorithms which do not take intensity correction into consideration lead to a narrow white
bias field. This phenomenon occurs due to the minimization of the similarity S(u). However,
these solutions are not expected in image registration of image pair VII. This shows the ne-
cessity for introducing the intensity correction process in the proposed Algorithm 4.1. Note
that [31] pursuits a minimizer of the cost functional with three different regularizations, while
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Figure 8. Comparison on V: The first column is the floating image T(-) for each image pair; The second
column is the floating image D(-) for each image pair; The third and fourth columns are the image registration
results of Algorithm 4.1 and Algorithm 3.2 for each image pair, respectively.

Algorithm 4.1 searches for the minimizer of S(u,m, s) without any regularization. The com-
parison between Algorithm 4.1 and FBNE algorithm in [31] further validates the advantage of
greedy matching. However, without proper multiscale consideration, greedy matching with-
out regularization is not expected to work well. This is the main reason why the multiscale
approach is introduced in this paper.

For image pairs VIII, there is a low contrast in some local region of the floating image T'(-),
which may make it ineffective for some image registration models without intensity correction
process. The registration result for image pair VIII is listed in Fig 11 and Table 3. This image
with a low contrast in floating image 7'(+), the proposed algorithm and FBNE [31] successfully
recover the low contrast region and lead to a final result with more details on the tissue. This
shows the importance of intensity correction in the registration for these image pairs with a
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Figure 9. Comparison on VI: The first column is the floating image T(-) for each image pair; The second
column is the floating image D(-) for each image pair; The third and fourth columns are the image registration
results of Algorithm 4.1 and Algorithm 3.2 for each image pair, respectively.

low contrast floating image. In this view, it is helpful to use the proposed algorithm to register
the image pairs which contains at least one high resolution image and one low contrast image.
In addition, one can notice from Table 3 that the proposed Algorithm 4.1 achieves the best
results for image pair VIII.

For image pair IX, the floating image contains bias field and varying illumination on
different regions of the domain. Compared with image pair II used in Test 5.2, there is
a square shadow surrounding the brain. This may affect the registration result. By Fig
12, we see that the local bias and square shadow are well eliminated in the final result of
the proposed Algorithm 4.1 and FBNE. This is an advantage led by bias correction in the
proposed Algorithm 4.1 and FBNE. Moreover, by the quantitative comparison on Table 3,
one can see that the proposed Algorithm 4.1 achieves a smaller Re-SSD than FBNE.
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(e) (f) (8)
Figure 10. Comparison on VII: (a) floating image T(-); (b) target image D(-); (c) T o @y(-) in Al-
gorithm 4.2, Re.SSD=9.76%; (d) 1DFDIM, Re.SSD=25.72%; (¢) DFIRA, Re.SSD=22.8%; (f) LDDMM,
Re_SSD=50.05%; (g) FBNE, Re_SSD=12.57%.

(e) (f) (2)
Figure 11. Comparison on VIII: (a) floating image T(-); (b) target image D(-); (c) T o ¢n(-) in Al-
gorithm 4.1, Re.SSD=5.28%; (d) 1DFDIM, Re_SSD=76.09%; (e¢) DFIRA, Re_SSD=66.54%; (f) LDDMM,
Re_SSD=51.23%; (g) FBNE,Re_SSD=24.41%.

6. Conclusion. In this paper, we propose a variational model for joint diffeomorphic image
registration and intensity correction. Based on the joint model, some related greedy matching
problem (2.17) is proposed. For solving the greedy matching problem (2.17), the multiscale
approach is introduced which addresses the instability by directly solving the greedy matching
problem (2.17). This provides a theoretical support for this kind of research. For the numerical
computation of the multiscale approach, an ADM method is proposed and the convergence
of this process is proved. In addition, a coarse-to-fine strategy is introduced to accelerate the
registration algorithm and the convergence of the coarse-to-fine strategy is proved. Finally,
three different kinds of numerical tests are performed to validate the theoretical results in this
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(e) () (8)
Figure 12. Comparison on IX: (a) floating image T'(); (b) target image D(-); (c) To@x (+) in Algorithm 4.1,
Re_SSD=3.05%; (d) 1DFDIM,Re_SSD=83.2%; (¢) DFIRA, Re_SSD=68.96%; (f) LDDMM, Re_SSD=36.18%;
(4) FBNE, Re_SSD=15.44%.

Table 3
Quantitative comparison between five different image registration algorithms

Data Algorithm Re-SSD(%) MFN CPU/s
Algorithm 4.1 9.76 0 40.3
1DFDIM [17] 25.72 0 62.7
data VII DFIRA [18] 22.80 0 372.6
LDDMM [24] 50.05 0 21.2
FBNE [31] 12.57 0 118.6
Algorithm 4.1 5.28 0 42.2
1DFDIM [17] 76.09 0 86.3
data VIII DFIRA [18] 66.54 0 456.7
LDDMM [24] 51.23 0 30.2
FBNE [31] 24.41 0 101.6
Algorithm 4.1 3.05 0 50.4
1DFDIM [17] 83.2 0 90.3
data IX DFIRA [18] 68.96 0 748.4
LDDMM [24] 36.18 0 23.7
FBNE [31] 15.44 0 117.3

691 paper. For the future research, we may extend this work to the field of image registration
692 joint segmentation.
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Appendix A. Estimation on L> norm for the Hessian matrix of In(7T'0 @,,_;(x + vF) —
Sp_1 — 0sF) with respect to vF.
The Hessian matrix of In(T o @,,_;(x + vF) — 5,1 — dsF) is formulated as

o 1 H, H,
T To@n (x4 vE) —se1 —0sh)? \ Ha Hy )’

2
where H) = T o @, 1(x + vF 6‘9—( 0@, (x+vE)) — (%To{onfl(x—kvﬁ)) ,Hy=To
Pt () 55 (T 0 @y (x4 vE) = (T 0 @y (x+vE) ) (557 0 @y (x + vE) ) and
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2
195 Hy = To@, y(x+vE) 2y (To @, y(x+vh)) = (T 0 @,y (x+vE)) . By (1.3) and (3.5),
799 we know (T o @,_1(x+VvE) — 5,1 — 65%)2 > (k — ko).
800 Now we give an estimate on the L*> norm of H;. Since a > 3.5, by the Sobolev embddding
801 Theorem [9] (H§(Q) < C?(£2)), we obtain

IV2¢l[2 0y = IV?ullzq) <CRi(u) < CA, /Q(mn—l +InD—In(To@, | —s,-1)) dx

<20M|Q|(K? + In2(M/K)?) < AnM,

802
03 where M £ M(Q,a) = 2C|Q|(K2 + In>(M/k)%) > 0 and C = C(R, ) is a positive constant
804 (see Lemma 3.2 and Lemma 3.3 in [16] for details). Similarly, there holds

805 lun |2 () < AnM.

806 Note that

807 Vx@n(X) = Vg, 00 Vg1 Vg, 1Pn_2 Vg, Pn_1" VxPp(x),

808 where g = @ 0@y -, for k=1,2,--- n. Since g are mappings from 2 to 2, by (A), we
809 obtain

810 V@ () 120y < A1+ AnM™ < (A M)™.

811 Then by the chain rule, we have

~ - ~ 1 - ~ 2
oT o Pn—1 _ oT o Pn—1 a(pnfl + oT o Pn—1 8Qpnfl

o 0x1 N 8@%_1 ox1 8@%_1 0x1
813 and
PTop, y Top, (M_l ) Y 0T 0B 050 OFh
Ox? O(en_1)? Oz Opp 10¢5 4 Oxy Oy
814 OT o @, 1 0°¢r_, n PT o, <58031—1)2
07, 0 T AL \ om

8T e} ‘:Dn—l 8295711_1 8T o (:on—l 8295%—1

8@%4 8$% 84»5%%1 Bx%
815 This concludes
816 H T 0 n -y < AM (M, M)"
61’1 C’(Q)
817 and
PTop, . |° o~
818 H ° f”’l < 6M (N, M)"
Oxy )
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819 Based on the above mentioned discussion, we can get
820 [ Hillo@) < 10M™ (A, M)™.
821 In addition, we can also obtain the similar estimate for Ho, H3. Therefore, we conclude

100 (A M)"

822 1H (o) lo@) < (% — ro)?

823 Appendix B. Multigrid method for PDE (3.27). By adopting Grunwald approximation

824 [38], %&x), agli(f‘ ) (i = 1,2) are discretized as follows:
0 f (Xp,q) 0" f (Xp,q)
o (B1) SRR S5 g, +O), T2 < 68 f(x,) + O(h),
826 i i
p+1 N—p+2 q+1
827 where 0f fpq = h%lZ% Pz(a)fp—lJrl,qa Oty fpag = h% ZZ% pl(a)fp-‘rl—Lq? 05 fpg = ;%a Zopgr?)
= = m=
1 VL (@) () (@)
828 fpq-mi1, 05 fpar = & 2. Pm fpgtm—1, and p;’ is computed by the formula py~ = 1,
m=0
20 g = (1= He)p).
830 Let Uy = (fig f2.00 > fng) T, then it follows from (B.1) that
N 04U, 0**U, T
831 Py ~ BN, Uyq, 8Tf‘* ~ BN,aUQ7
o where @Us _ (9fra 9o 0 fng \ L 0%, _ (0% g 0 fag o Ina\" ond
832 where Zt = ( Fpet, Tt Thm s e = |\ Tomar s Tamer e g an
833
A e 0 00
ps) oY A 0 0
834 Bno= 7= : : Lo :
gl T L X
e (03 (03 e (03
PN" PNZ1 PN-—2 P2 P1

835 Hence, we obtain

‘ oa* o« Uq T A

836 8.1;?* < 8:13% > = BN,aBNyaUq = AN,aUq.

837 In a similar way, we obtain the following two approximations for % (%éx)):
838 das < Bas > = AN,aVp,
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where V,, = (fp1, fp2,++ » fp.n)T. By adopting the Grunwald approximation, div®*(Veuf+!)
and Au®*! are approximated by the following two formulas:

(B.2) (aiv(veul )

N
) ™ 2 (00D + oD ) )
’ =

and

1
B3) (Aul) ~ gm0 g+ @B+ (5 ngen + (a1 — 450,
where 8 = 1,2. Based on (B.2) and (B.3), (3.27) is discretized as follows:

(14 470 + 200 p1(an o (p, D) + ana(0) (uh 5 )p g
Ns

B4 2671” aN,a(p, l)(ufl al)l,q aN,a(q, l)(“ﬁ 51)17,!
i b
I=1,l#p,q
k+1

k+1 k+1 k+1 k+1
—Tn ((unta Jp+1,q + (unJZa Jp—1,4 + (unJ% Jpa+1 + (unE )p,q—l) = (v n,B )p.as

where 7, = 29 19 Then (B.4) induces the following solver for (3.27):

Ns

1
(Ufigl)(tﬂ) =1 (( 7’%1) — 201 Z (QN,a(pa D(u I:LJ%l)( ) +ana(q, 1) (u 7’%1)1(3)
(B.5) n 1:1,l;ép,q

k+1y(¢ k+1y(¢ k+1\(¢ k+1\(¢
+ Tn ((un:Z );—&)—l,q + (un:Z );ll,q + (un:Z );,21-1—1 + (unzz );,L—l) )7

where Y, = 1+4v, + 20, pu(ano(p,p) +ana(g,q)) and t = 0,1,2,---. Hence, based on (B.5),
the multigrid algorithm for (3.27) can be summarized in Algorithm B.1.
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Algorithm B.1 2D multigrid algorithm for u-problem

Initialization: u®t" u’fjh, ufjol’h =ubh 4 II, i > 0, k = 0 and maximum iteration times
K.
while [uf ™" — " tM")| > ||| and & < K

u]ffol o gkt h'

Step 1. relax (B.5) with initial guess ub ; compute residual error i on QP

Set level = L

Step 2. restrict the residual error to Q¥ by using LA RH kLA,

k+1 k+1,H

, and with
k+1.H

Set level = level — 1 H = 2h, and relax (B.5) by replacmg vyt with ry,

k+1, k+1,

initial guess uy, = 0 to obtain approximations update residual error ri,

Step 3. If level =1,
k-+1,H

do: accurately solve the system (B.5) by replacing vi*! with ry to obtain
k+1,H .

the solution uy, ;

else

do: repeat Step 2 until level = 1.

endif.

Step 4. If level = L o
do: relax (B.5) to obtain the final solution uﬁ“’h for this round and let k =k + 1

else
do(repeat): interpolate the correction to next fine grid by letting ukJrl h =
I Zuﬁ“ A ; update current grid approximations using correction ukJrl h— fﬁgl h +
it pelax (B.5) with initial guess a5t on fine grid to obtain approximations
,’?Ll " and let level = level + 1. Repeat this process until level = L.
endif.
Set k=Fk+1;
endwhile

Output: uft! = ub ™",

This manuscript is for review purposes only.



	Introduction
	Multiscale approach based on the model (1.3) and related greedy problem
	Alternating direction method for (2.2)
	Coarse-to-fine strategy for the multiscale approach
	Applications for the proposed multiscale approach
	Sensitivity test for parameters n and  in Algorithm 4.1
	Comparison between the proposed coarse-to-fine Algorithm 4.1 and M2FDIR in HWZSiam
	Comparison between the proposed coarse-to-fine Algorithm 4.1 and Algorithm 3.2 (without coarse-to-fine process)
	Comparison between Algorithm 4.1 and some other image registration algorithms

	Conclusion
	Appendix A. Estimation on L norm for the Hessian matrix of ln(Tn-1(x+vkn)-sn-1-skn) with respect to vkn
	Appendix B. Multigrid method for PDE (3.27)

