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Abstract

Objective. Self-supervised learning methods have been successfully applied for low-dose computed
tomography (LDCT) denoising, with the advantage of not requiring labeled data. Conventional self-
supervised methods operate only in the image domain, ignoring valuable priors in the sinogram
domain. Recently proposed dual-domain methods address this limitation but encounter issues with
blurring artifacts in the reconstructed image due to the inhomogeneous distribution of noise levels in
low-dose sinograms. Approach. To tackle this challenge, this paper proposes SDBDNet, an end-to-end
dual-domain self-supervised method for LDCT denoising. With the network designed based on the
properties of inhomogeneous noise in low-dose sinograms and the principle of moderate sinogram-
domain denoising, SDBDNet achieves effective denoising in dual domains without introducing
blurring artifacts. Specifically, we split the sinogram into two subsets based on the positions of detector
cells to generate paired training data with high similarity and independent noise. These sub-sinograms
are then restored to their original size using 1D interpolation and learning-based correction. To
achieve adaptive and moderate smoothing in the sinogram domain, we integrate Dropblock, a type of
convolution layer with regularization, into SDBDNet, and set a weighted average between the
denoised sinograms and their noisy counterparts, leading to a well-balanced dual-domain approach.
Main results. Numerical experiments show that our method outperforms popular non-learning and
self-supervised learning methods, demonstrating its effectiveness and superior performance.
Significance. While introducing a novel high-performance dual-domain self-supervised LDCT
denoising method, this paper also emphasizes and verifies the importance of appropriate sinogram-
domain denoising in dual-domain methods, which might inspire future work.

1. Introduction

Computed tomography (CT) is an important imaging technique in medical diagnosis. However, excessive x-ray
doses from CT scans can potentially harm patients. To mitigate this risk; it is necessary to reduce the x-ray dose.
In the field of medical CT, the ‘as Low as Reasonably Achievable’ (ALARA) guideline (de Gonzalez et al 2010) was
introduced to minimize radiation exposure during CT diagnosis. Nonetheless, low-dose CT (LDCT) tends to
introduce noticeable noise and artifacts in the reconstructed images compared to normal-dose CT. Hence,
LDCT denoising has always been a hot research topic in the medical imaging community.

Denoising the reconstructed image or sinogram directly with classical image denoising methods is
convenient and practical. For instance, local averaging methods (Yaroslavsky 2012) based on smoothing filters,
and nonlocal averaging methods like NLM (Buades et al 2005) and BM3D (Dabov et al 2007), which rely on
image internal similarity priors, can be employed for LDCT denoising. These methods are easy to implement
and fast to run based on explicit degradation models. However, the noise characteristics of both sinograms and
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images of LDCT do not fully conform to the assumptions of these methods, making it challenging for them to
achieve satisfactory results.

In recent years, deep learning methods with convolutional neural networks (CNNs) have been proposed for
image denoising with great success. Popular network architectures include DnCNN (Zhang et al 2017), FFD-Net
(Zhang et al 2018), CBD-Net (Guo et al 2019), and many variations of UNet (Ronneberger et al 2015). They
achieve better results than traditional methods while using significantly less time for inference. In the field of
LDCT denoising, numerous networks with different structures have been proposed. Representative examples
include FBPConvNet (Jin et al 2017), RED-CNN (Chen et al 2017) and CTformer (Wang et al 2023), which
achieve powerful denoising effects on LDCT images. Some other methods perform supervised learning
denoising in both the sinogram domain and the image domain with a reconstruction operator for domain
transformation, thus achieving excellent denoising performance. Examples of the representative methods are
DDPNet (Ge et al 2022), DuDoUFNet (Zhou et al 2022) and CLEAR (Zhang et al 2021).

Although deep learning methods have shown exemplary performance in image denoising tasks, mainstream
supervised denoising methods require a large amount of labeled data for network training, which is difficult to
collect in real applications. In fact, in clinical diagnosis, it is impractical to scan the same patient twice at different
doses to obtain paired data. Additionally, other factors, such as uncontrollable motion due to respiration,
further prevent high-quality labeled data from being collected. To obtain labeled and paired data more easily,
some generative methods have been utilized in LDCT denoising. Some of them generate data by physical
models. For example, Zeng et al simulated low-dose sinograms from high-dose sinograms using a CT projection
model to obtain paired data (Zeng et al 2015). However, the generated data from such methods is not of high
quality, and it remains a big challenge to generate realistic data of CT. Some others of the generative methods
directly generate data through a deep-learning model. The most representative ones are based on GAN (Creswell
etal2018), such as GAN-CIRCLE (You et al 2019), Cycle-Free CycleGAN (Kwon and Ye 2021), AdaIN-Based
Tunable CycleGAN (Gu and Ye 2021), IdentityGAN (Li et al 2020) and NE-GAN (Niu et al 2021). These GAN-
based methods use unpaired noisy-clean data, avoiding the need for paired data successfully. However, most of
them rely on the cyclic consistency loss of GAN, which usually causes poor stability during training. Moreover,
ensuring the accuracy of these generative models in LDCT denoising is not easy. Therefore, the application of
supervised denoising methods for practical diagnosis is limited.

To avoid the reliance on labeled data, many unsupervised learning methods have been proposed in recent
years. These methods are more practical and have also achieved good results in image denoising. One
representative method is Noise2Noise (N2N) (Lehtinen et al 2018), which trains networks with paired noisy
images. N2N shows that training with two images of the same scene with uncorrelated and zero-mean noise can
also achieve image denoising. Inspired by N2N, several methods were proposed for LDCT denoising (Hasan et al
2020, Wonetal 2021, Wu et al 2021, Fang et al 2021, Yuan et al 2020, Zhang et al 2022,2021). However, an
inevitable problem when applying these methods in LDCT denoising is that paired two low-dose CT images are
hard to obtain. Another class of methods learns priors in only normal-dose CT images by generative models and
incorporates them into low-dose CT reconstruction. Fabian et al proposed PatchNR (Altekriiger et al 2023) to
learn a regularization term from the patches of a few normal-dose images with normalizing flows (Kobyzev et al
2020) and used it in iterative low-dose reconstruction. He et al utilized a score-based model (Song and
Ermon 2020) to learn priors in normal-dose images and conducted iterative reconstruction, thus proposing
EASEL (He et al 2022). Liu et al proposed Dn-Dp (Liu et al 2023) which adopts diffusion models (Croitoru et al
2023) to learn priors in normal-dose images and solve multiple maximum-a-posteriori problems iteratively to
achieve denoising for low-dose images. Such methods only require normal-dose images for training and achieve
effective LDCT denoising. However, the requirement for a large amount of normal-dose images still limits their
application to situations with onlylow-dose data. In addition, such methods usually require iterative solving,
which often means larger time consumption.

Recently, self-supervised learning methods have also been proposed for image denoising which explore and
utilize the local similarity of the noisy image itself. Deep image prior (DIP) (Ulyanov et al 2018) leverages the
regularization effect of networks and achieves denoising by early terminating the training process of a generative
network. Noise2Void (Krull eral 2019) and Noise2Self (Batson and Royer 2019) were proposed for image
denoising by predicting pixel values based on their local noisy surroundings, under the assumption that noises
among neighboring pixels are independent. However, this assumption is not applicable in LDCT since the noise
in a CT image is known to be correlative. For LDCT denoising, Noise2Sim (Niu et al 2022) was proposed to
denoise the correlative and structural noises by training with adjacent slices in the same 3D CT image.
Noise2Inverse (Hendriksen et al 2020) splits the sinogram into several equal parts in terms of the projection
angles and then reconstructs them into paired noise-independent images for network training. Although these
methods have demonstrated promising results, they are essentially pure post-processing methods that operate
only in the image domain and make no use of the sinogram. In fact, as more original measurements, sinograms
contain lots of useful priors, abandoning the use of sinograms often means losing them. Hence, the utilization of
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sinograms in self-supervised LDCT denoising methods has begun to attract attention. To explore priors in the
sinogram domain, Zhou et al utilized the similarity of sinogram data from adjacent projection angles for self-
supervised denoising (Zhou et al 2022). Furthermore, Wagner and Pfaff et al proposed a dual-domain self-
supervised method (Wagner et al 2023). They split the sinogram by projection angles, connected the sinogram
domain and image domain with a reconstruction operator, and trained the entire network with the image-
domain loss. Niu and Wang et al applied Noise2Sim to both the sinogram and image domains, connected them
with a reconstruction operator, and used a dual-domain loss to train the network, resulting in SSDDNet (Niu
etal 2022). These dual-domain methods effectively utilize sinograms and improve denoising performance based
on the image post-processing methods.

Although existing dual-domain self-supervised LDCT denoising methods do consider the sinogram domain
and obtain positive results, they treat sinograms as general images and overlook important properties of low-
dose sinograms. In fact, the noise levels of pixels in alow-dose sinogram are often inhomogeneous due to the
nature of the CT projection process (Zhu et al 2012), which results in blurring artifacts in the reconstructed
image when treated by an isotropic global denoiser like classic CNNs. If this degradation occurs, it would be
challenging to deal with it in the image domain for self-supervised denoising. Another issue is that the denoising
strength in the sinogram domain must be well-controlled to avoid introducing new secondary artifacts in the
reconstructed image. This is because each single sinogram pixel would produce a global effect in the
reconstruction process. So, denoising the sinogram should be done carefully such that only noise is removed.
Unfortunately, existing dual-domain self-supervised methods do not address these issues but instead utilize
classic CNNs for sinogram-domain denoising directly. Consequently, their final output images might suffer
from blurring artifacts or streaks.

In this paper, we propose SDBDNet, an end-to-end dual-domain self-supervised deep learning method for
LDCT denoising that optimizes the sinogram-domain denoising by explicitly taking the important properties of
the sinogram into consideration. For self-supervised learning, we split the sinogram into two equal and non-
overlapping parts based on the position of detector cells to acquire training data with good similarity and
uncorrelated noise. Splitting the sinogram will significantly reduce the amount of data that can be used for
reconstruction, which would introduce over-smoothing and artifacts in the reconstructed image. To tackle this
problem, we use one-dimensional (1D) interpolation and learning-based correction to restore the sub-
sinograms to their original full size. To tackle the inhomogeneous noise levels in the sinogram, our SDBDNet
incorporates Dropblock layers to adaptively localize the effect of convolution for denoising, thus effectively
reducing the blurring artifacts. In addition, to control the denoising strength of the sinogram domain and
balance the effects of the sinogram-domain and image-domain denoising on the final result, a weighted
averaging strategy to balance the denoised and noisy sinograms is proposed to further reduce possible artifacts
due to over-smoothing.

Our work can be summarized as follows:

+ We propose an end-to-end dual-domain self-supervised neural network model for LDCT denoising, which
just assumes the availability of a representable dataset consisting of low-dose sinograms. For the first time, a
weighting strategy is explicitly built into the proposed model to balance the behaviors of sinogram-domain
denoiser and image-domain denoiser.

+ Different from most other self-supervised LDCT denoising methods, we attach great importance to
sinogram-domain denoising and make effective improvements. For the first time, we propose to incorporate
the noise properties of low-dose sinograms into designing the network architecture in dual-domain self-
supervised methods, which helps to avoid introducing secondary artifacts.

+ Through numerical experiments, we demonstrate that our SDBDNet achieves superior performance in LDCT
denoising compared to some traditional and self-supervised deep-learning denoising methods.

2. Related work

2.1.Image-domain methods
Unsupervised learning is a convenient and widely used approach for image denoising, with N2N (Lehtinen et al
2018) being a prominent example. The idea of N2N has been extended to the field of LDCT denoising, e.g.
Noise2Sim (Niu et al 2022) and Noise2Inverse (Hendriksen et al 2020), and achieved promising results.
Noise2Noise proposes a denoising method that uses pairs of noisy images of the same scene without clean
labels, under the assumption of zero-mean and uncorrelated noise. N2N has demonstrated that its performance
is comparable to supervised methods when the number of training samples is large enough. N2N trains
networks using noisy paired images to supervise each other:
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o1
6* = argmin NZ | Fxi + mis; 0) — (x; + ni) 3, @D
0 i

where x; is the ideal clean signal of ith training image, n;; and n;, are two independent noise distributions. The
function F is the denoising neural network (NN) parameterized by 6, and N is the total number of the training
samples.

Although N2N eliminates the need for labeled training images, acquiring two different noisy observations of
the same scene, particularly in CT, can be also difficult. To address this issue, Noise2Sim (Niu et al 2022) replaces
the needed paired noisy images with neighboring slices chosen from the same 3D CT image. The denoising
network is then trained by minimizing the following loss:

6* = argmin %Z | F(x; + nj 0) — (x; + & + 0)|}3, @)
0 i

where n;and n; are two different noise distributions. d; is the difference between the uncontaminated content in
the two similar image slices. Noise2Sim does not require two noisy images of the same scene, but the need for
neighboring slices makes it not a strict self-supervised method.

According to the characteristics of CT reconstruction, Allard proposed a strict self-supervised method
Noise2Inverse (Hendriksen et al 2020) for LDCT denoising by generating multiple noisy observations from the
same sinogram. Defining an operator S,: RN>No — (RN/mxNa s RIN/mxNa | RIN./mxNi) that maps a N, X Ny
object (e.g. a sinogram) into n non-overlapping sub-objects of the same size, Noise2Inverse splits a low-dose
sinogram s; into n sub-sinograms by applying S,:

(sila Si2 ,.-.,Sin) = SV(S,'), (3)

where N, and N, are the number of projection angles and detector cells, respectively. With a reconstruction
operator R: RN/m>xNi —, RN x N (e.g FBP or SART), each sub-sinogram s;;is reconstructed intoa N x N
sized noisy image X;;:

Xii = R(sjj). 4
Since there are no explicit correlations between the sub-sinograms, the resulting images can be treated as

multiple observations of the same scene with uncorrelated noise. Similar to N2N, Noise2Inverse trains networks
with one image as the label and the average of the other images as the input:

n— 17

2
1 1
0* = argmin NZ H f( Z i,‘j; 01— X, . 5)
0 i j=1

2

Noise2Inverse shows an effective way to obtain different noisy observations by sinogram-splitting. However,
splitting the sinogram into several parts will result in blurring or even sparse-angle artifacts in the reconstructed
images as only half or even less data are used for each separate reconstruction.

Although the aforementioned image-domain methods exhibit effective denoising capabilities, they
disregard the valuable priors in the sinogram domain. Without the participation of the sinogram, the use of
information existing in the measurement could be inadequate, and it might also lead to inconsistencies between
the reconstructed image and its corresponding sinogram during the denoising process, resulting in excessive
smoothness and blurring.

2.2.Dual-domain methods

In order to achieve more efficient LDCT denoising, self-supervised methods concerning the sinogram domain
have been proposed. Zhou et al (2022) employed the sinogram data of adjacent projection angles to supervise
each other for self-supervised denoising. Wagner e al (2023) employed a method to split each sinogram into two
parts and set up networks to denoise the sub-sinograms. Through an embedded operator, the denoised sub-
sinograms are reconstructed into images for self-supervised denoising, similar to what Noise2Inverse does. Niu
et al extended Noise2Sim to the sinogram domain and proposed SSDDNet (Niu et al 2022). They used adjacent
slices to supervise each other in both the sinogram and image domains. With the utilization of priors in the
sinogram domain, these dual-domain methods achieve good denoising performance. However, the image
blurring caused by sinogram splitting has not been addressed in these dual-domain methods, and denoising with
adjacent slices is still not strictly self-supervised.

While sinogram-domain denoising has gained attention in the aforementioned dual-domain methods, they
all employ denoising strategies designed for general images, overlooking the unique noise characteristics of low-
dose sinograms. In fact, sinograms tend to suffer from non-stationary noise distribution (Deng et al 2019).
Global isotropic denoisers like Gaussian filters and classical CNNs lead to blurring and artifacts easily when
applied for sinogram-domain denoising (Zhu et al 2012). Figure 1(d) shows the reconstructed image with a
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(a) Normal-dose image  (b) Low-dose image (¢) N2V on image (d) N2V on sinogram

Figure 1. Denoising performance of N2V with DnCNN in the image domain and sinogram domain. The output image from
sinogram-domain denoising shows excessive blur at the periphery of the image with artifacts.

sinogram denoised by a typical self-supervised method Noise2Void (Krull et al 2019) embedded with a classical
deep learning denoiser DnCNN (Zhang et al 2017), where the blurring artifacts are obvious when compared to
the result by applying the same method in the image domain as shown in figure 1(c). It is well-known that each
pixel in the sinogram has a global influence on the reconstruction process, and the quality of the reconstructed
image is highly sensitive to small changes in the sinogram. Thus, effectively managing the denoising intensity in
the sinogram domain becomes paramount. However, existing dual-domain self-supervised denoising methods
do not take this into consideration. In contrast, our SDBDNet employs Dropblock layers to achieve adaptive
denoising of the non-uniform noise levels in the low-dose sinogram, significantly reducing the blurring artifacts
in the reconstructed image. Additionally, SDBDNet employs an explicit weighted averaging process to balance
the influence of the sinogram-domain and image-domain denoising, effectively controlling the denoising
strength in the sinogram domain, thereby further reducing the over-smoothing problem.

3. Method

SDBDNet consists of essentially three ingredients: the sinogram-domain network, the reconstruction layer, and
the image-domain network. We perform self-supervised denoising in both the sinogram domain and the image
domain, and incorporate the Ordered-subset Simultaneous Algebraic Reconstruction Technique (OS-SART)
(Andersen and Kak 1984) as the reconstruction layer. This section will introduce these three ingredients in detail,
and illustrate the overall pipeline and the algorithm flow-chart of SDBDNet.

3.1. The sinogram-domain network

In the sinogram domain, we achieve self-supervised denoising by mutual supervision of the low-dose data
corresponding to adjacent detector cells, and since they come from different rays, their noise distributions are
uncorrelated. Besides, the noise approximately follows a non-stationary Gaussian distribution (Zhu et al 2012).
Therefore, we can use adjacent pixels along the detector cells for self-supervised denoising since the basic
assumptions of the N2N (Lehtinen et al 2018) are met. By extracting the sinogram at equal intervals and splitting
itinto two parts, we can obtain a pair of sub-sinograms with similar content and uncorrelated noise, which can
be used for training the self-supervised denoising network. Compared to the splitting strategy adopted in the
literature that splits a sinogram according to the projection angles, we choose a more rational approach: we use
the sinogram data from all projection angles while splitting the sinogram into two equal parts in terms of the
positions of detector cells. It is known that the sinogram data has stronger neighboring correlations along the
detector cells rather than along the projection angles (Wang et al 2006), thus our splitting strategy should lead to
abetter pair of noisy observations. Mathematically, defining an operator Sy: RN-*Ne — (RNox(Na/2) " RNy x(Na/2))
that splitsa N, x Ny sized sinogram into two equal parts according to the parity of the indices of the detector
cells, we have:

(Si 0> Siie) = Sa(sy), (6)

where s;is the noisy sinogram, s; , and s; , are the two obtained sub-sinograms, respectively.

To address the sinogram halving issue that arises from splitting, we utilize interpolation and a learning-based
correction to inpaint the missing sinogram data, similar to some widely used approaches for inpainting sparse-
angle CT sinograms. With a 1D linear interpolation operator Z: RN ®Na/2) _, RNoxNi that along the direction of
the data corresponding to each projection angle (rows of the sinogram), as shown in figure 2, we patch the half-
sized sub-sinograms to the full size while keeping the existing data unchanged:

sio = Z(si0)s
sio = Z(sie). 7

Then, we perform data correction and self-supervised denoising on s/ , and s; , through the sinogram-
domain network Fg which is parameterized by 5. We feed s; , and s , into the network and make each other as
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Figure 2. The flow chart of the proposed SDBDNet.

their labels to train the network:

3+ | Fs(sies 05) — i) (8)

.t
0% = argmin 52 (|7(s}es 65) sl
0. i

S

By introducing the mean squared error (MSE) loss function represented by £,,,., we can import the loss
function Lg;,, of the sinogram-domain denoising network from (8):

Lsing = Emse(ﬂ(sg,o; 65): S;)g) + *Cmse(fé(sg,e; 95): S;)o)' )]

Thus, the denoised sinogramss; ; and s; , is given by:
sii = Fs(si,3 05),
sip = Fs(sie 05). (10)

With the above training strategy, the network can effectively perform data correction and unsupervised

denoising simultaneously. In fact, the learning process of the network on the real sinogram data sf,fl

corresponding to the k;;, detector cell can be expressed as:

0* = argmin || Fs(s'; 0) — Sinlfp”%
0

. 1 2
= argmin ‘ F(sih 0) — E(s;fk“’_l +sel || . (11)
0 2

While on the interpolated data sZ’ktp corresponding to the kth detector cell can be expressed as:

0% = argmin || Fs(si}s 0) — si¢ |3 (12)
0

Equation (11) demonstrates that when acting on real sinogram data, the network learns to perform self-
supervised denoising, while equation (12) shows that when acting on interpolated data, the network learns to
correct the interpolated data. Consequently, the trained sinogram-domain network can effectively perform both
sinogram correction and denoising simultaneously.

As mentioned earlier, CNN denoisers with conventional convolution kernels have difficulties in dealing with
inhomogeneous noise levels. One solution to this problem is to modify the global action of convolution kernels
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and adjust the denoising strength in an adaptive manner. In our study, we replaced the traditional convolutional
layer in the sinogram-domain network with the Dropblock layer (Ghiasi et al 2018). The Dropblock layer has
been successful in image segmentation and recognition as a regularization method for convolutional networks.
It performs dropout on the feature produced by each convolution kernel. When used for sinogram-domain
denoising, the Dropblock layer discards part of the effect of each convolution kernel with a drop rate r instead of
acting on the entire sinogram. As a result, the denoising effect of each kernel is limited to only a portion of the
sinogram. This allows each convolution kernel to denoise only sinogram regions where the noise levels are more
similar, effectively alleviating the problem of excessive denoising caused by global denoisers.

3.2. The OS-SART layer

To construct a dual-domain method, we need to reconstruct sinograms into images with a reconstruction
operator R: RN>Ne — RNXN ‘We select the ordered-subset simultaneous algebraic reconstruction technique
(OS-SART) (Andersen and Kak 1984) as our reconstruction operator, since it is commonly used in the CT
community. We incorporate OS-SART into the dual-domain network as a layer to connect the sinogram and
image domains. After randomly permutating the reconstruction angles, we found that the OS-SART algorithm
with 1 iteration could reconstruct an image of high quality, and more iterations would not bring significant
improvements. Hence, we set the iteration number of the OS-SART layer to 1. In fact, more iterations will
significantly increase the calculations of backpropagation when training the network, thereby increasing the
training time and storage requirements. In this case, an iteration number of 1 is a rational choice.

3.3. The image-domain network
In the image domain, the two images reconstructed from the denoised sinograms are used as each other’s labels to
train the denoising network. However, instead of directly utilizing the sinograms output from the sinogram-domain
network, we opt for a weighted average of the denoised sinograms and their corresponding original noisy ones. The
primary objective of this weighted average is to further control the sinogram-domain denoising strength and restore
some details that may have been blurred during sinogram-domain denoising. Although this reintroduces some noise,
the noise level is significantly reduced compared to that without sinogram-domain denoising. Moreover, the
reintroduced noise undergoes processing in the image-domain network, which should be again effectively removed.
The weights are calculated based on the column sum of the original noisy sinogram. It is known that larger
sinogram values correspond to higher noise levels (Deng et al 2019). As a simple strategy, we utilize the column
sums of the sinogram as an indicator of the magnitude of noise levels presented in each column. To obtain the
weights, we first sum the pixel values on each column of the original noisy sinogram s; with an operator M:
RN->Ni — RNi, normalize it with its maximum value, and then use a suitable scalar 3 € [0, 1] to perform scaling
of the weight. In detail, the resulting weight vector is:

B*M(s))

_ 13
max (M(s;)) (42

where max is the operator to compute the maximum value of a vector. In order to correctly multiply o with the
corresponding projection values in the sinogram, we stretch out « to size N, X N, with a row copy operator C:
RNi — RNoxNa and define N, x N sized odd—even indicator matrices I, and I,, where I, takes the value 1 in the
odd columns and 0 in the even columns while I, = 1 — I, is the opposite. In the weighted average, o corresponds
to the weight of the denoised sinogramss; ; ands; ,, and (1 — a) corresponds to the original noisy ones;. Thus,
the weighted sinograms §; ; and §; ; are given by:

§i1= I C(w) + L) xs;) + [CA — ) xs,
Sio=LCla) + L) *si + L'C(1 — ) xs,. (14)
Once the two averaged sinograms are obtained, we use the OS-SART layer (represented by R ) to reconstruct
them into images x; , and x; :
Xio = R(O) §1',1) w))
Xije = R(()) §i,2) L(J), (15)
where 0is the N x Nsized initial image set as zero-values and w represents the relaxation parameter of OS-

SART. The resulting images are then fed into the image-domain network as labels for each other to train the
denoising network F; parameterized by 0:

2). (16)

o1
07 = argmin NZ(HE(XLO; 0D — Xielz + [1F(Xie 0) — Xio
o .
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Algorithm 1. SDBDNet

©

Input: The noisy sinogram s;, initial image x;”’ = 0, the odd—even indicator matrices I, and I, the training iteration number n and the

relaxation parameter w for OS-SART.
Operator: Sy, Z, C, R.
Networks: Fg parameterized by 6s, F; parameterized by 6.
Output: The denoisied image X; oy
Training:
for k=0; k < n; k++do
for every s; in the training set
(1) Splitting the sinogram s; into two parts, by:
(Si,0 Sie) = Su(s).
(2) Interpolating s; ,, s; . to the full size, by:
Sll',u = I(Si,o))
SI(,E = I(si,e)~
(3) Correcting and denoising s, and s,’-,,_, with the sinogram-domain network:
si1 = F5(8io5 05),
si2 = Fs(si 3 0s).
(4) Solving the weighted average of the sinograms:
Sii=U *xCla) + L) xsi1 + L, xC(1 — a) *s,
§5ip = xCla) + 1) * s, + I, « C(1 — ) *s;
(5) Reconstructing images using the OS-SART layer:
Xi, = R(0, §;1, w),
Xie = R(0, §;2, W)
(6) Denoising the images with the image-domain network:
xi1 = Fi(xi0 0D,
X2 = Fi(Xi.e Op).
(7) Training the dual-domain denoising network with the dual-domain loss:
[’Dual = LSino + A x £Img~
end for
end for
Testing:
(1) Repeating the above processes (1)~(6) in the training stage with the well-trained networks s parameterized by 0% and J; parameterized
by 6F.
(2) Taking the average of the two denoised images to obtain the final denoised image result.

1
Xiout = E(xi,l + Xi,Z)-

Theloss of the image-domain networks Ly, is given by:
Elmg = Emse(]:[(xi,o; oD, Xi,e) + ['mse(J:I(Xi,e; oD, Xi,o)- (17)
Thus, the denoised images x; ; and x; , are given as:

X1 = Fi(Xio; 0D,
X = FiXie 0. (18)

To combine the losses of the sinogram-domain and image-domain networks, we introduce a hyper-
parameter ) as the weighting parameter. The total loss £p,,; of the dual-domain network is given by:

Lpual = Lsino + A*Elmg- (19)

During the testing phase, we compute the average of the output images from F; to obtain the final denoising
resultX; ,,,» as expressed by:
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Figure 3. The flow chart of DnCNN with Dropblock layers.

=] =]
= 3 3 3 3 T ]

o o
& & & & & 2 - B 2 - B 2
+ — + + — + + - 8 % — >— 8 22— >— 8
2 2 2 2 2 2 € 5 = € 5 2
s 8 8§ 8 § ° B o b

o o

Noisy Image Denoised Image
Figure 4. The flow chart of RED-CNN.
1
Xiout = E(Xi,l + X;2). (20)

3.4. Pipeline

Our proposed SDBDNet is an end-to-end solution that produces the denoised image directly from the noisy
sinogram, as illustrated in figure 2. In the sinogram domain, we employ a 7-layer DnCNN (Zhang et al 2017)
(shown in figure 3), with Dropblock (Ghiasi et al 2018) layers replacing the standard convolutional layers. In the
image domain, we utilize the network of RED-CNN (Chen et al 2017), which has shown excellent performance
on LDCT image denoising, as depicted in figure 4. The entire denoising process is outlined in algorithm 1.

4. Experiments

In this section, we will evaluate the performance of our SDBDNet through experiments and ablation studies.

Our experiments were performed on two datasets: (1) the 2016 NIH-AAPM-Mayo Clinic Low Dose CT
Grand Challenge dataset’ (AAPM dataset) (McCollough 2016) and (2) the ‘LoDoPaB dataset’ (Leuschner et al
2021). For both datasets, we utilized the normal-dose CT images as the ground truth and generated the clean
sinograms using a simulated CT algorithm with a fan beam source and 360 projection angles uniformly
distributed in the angular range [0, 27], along with a linear detector consisting of 512 cells. To simulate radiation
with different doses, Poisson noise was added to the raw data, given by

= —In| — |, 4 ~ Poissonily X e
p, In| 1 1; ~ Poisson{I, r} 21)

Iy
where p and p,, represent the clean and noisy sinograms, respectively. The symbol I indicates the number of
incident photons, and I; represents the number of photons collected by the detector. In our experiments, we set
Io =1 x 10°as the normal dose, while I, = 1 x 10* (1% of the normal dose) and I, = 0.5 x 10*(0.5% of the
normal dose) as two low-dose conditions. For the proposed SDBDNet, we split the sinograms into two non-
overlapping, uniformly distributed groups based on the parity of the position of the detector cells within a range
of[1, 512], following the depiction in figure 2.

We reconstructed the normal-dose sinograms into images directly using the OS-SART algorithm and made
them the reference images for evaluating the denoising performance of the proposed SDBDNet and other
comparison methods. To assess the quality of the output images, we chose the peak signal-to-noise ratio (PSNR)
(Hore and Ziou 2010) and structural similarity index measure (SSIM) (Hore and Ziou 2010) as our evaluation
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metrics. For comparison, we computed the average PSNR and SSIM of all results on the test set for each method.
As abenchmark, we also directly reconstructed low-dose images from the test set and calculated their scores.

In terms of the choice of comparison methods, we chose two traditional well-known denoising methods:
NLM filter (Buades et al 2005) and BM3D filter (Dabov et al 2007). NLM and BM3D are two gold standards for
performance evaluation in image denoising, although the noise of LDCT images does not fully comply with their
Gaussian-noise assumption, their results still have reference values. Here we use their results as a benchmark and
reference. In learning-based methods, we chose two state-of-the-art (SOTA) self-supervised learning-based
denoising methods: Noise2Void (Krull et al 2019) (N2V) and Noise2Inverse (Hendriksen et al 2020), a recently
proposed dual-domain self-supervised denoising method (Wagner et al 2023), referred as ETSRP (end-to-end
trainable and self-supervised CT reconstruction pipeline, described by the original author), and a well-known
supervised LDCT denoising method RED-CNN (Chen et al 2017). For the Noise2Inverse method, thereisa
choice for the number of sub-sinograms. We tested two typical cases: N2Inverse-v2 and N2Inverse-v4,
respectively, for the sinogram to be split into 2 and 4 sub-sinograms.

Python codes for all the networks referred to above are publicly available. Also, the NLM filter and BM3D
filter were conducted by publicly available Python code in the SciPy library (https://scipy.org/) and BM3D
library (http://webpages.tuni.fi/foi/ GCF-BM3D/), respectively. During network training, we utilized the
Mean Squared Error (MSE) loss function and the Adam (Kingma and Ba 2014) algorithm with an initial learning
rate of 0.0001 for optimization. The mini-batch size was set to 8, and the network was trained for 1000 epochs,
stopping when loss reduction was no longer significant for several epochs. All experiments were conducted on a
server running Ubuntu 18.04, with Python 3.9.0, PyTorch 1.2.0, and a Nvidia RTX 2080Ti GPU card. The MSE
loss function and Adam algorithm were provided by the PyTorch library, whereas the OS-SART algorithm was
coded using CUDA kernels wrapped by the Cupy library (https://github.com/cupy/cupy).

4.1. Experiments on the AAPM dataset

The AAPM dataset (McCollough 2016) is a clinical dataset containing 1308 thoracic volumes from 1010
individuals, comprising 244 527 image slices with dimensions 0of 512 x 512. From this dataset, we selected seven
patients’ 2209 slices as the training set, one patient’s 340 slices for validation, and another patient’s 344 slices for
testing. We performed experiments on this dataset with two low-dose conditions: Iy = 1 x 10*(1%) and

I =0.5 x 10%(0.5%). After several trial and error tests, we set the parameters of the proposed SDBDNet as
follows: the scaling factor of the weighted average 5 = 0.5, the drop rate of the Dropblock layers r = 0.3 and the
weighting hyper-parameter of the dual-domain loss A = 0.5, for both the conditions.

To verify the denoising effect in the sinogram domain, we directly output the results of SDBDNet in the
sinogram domain (SD) and reconstructed them into images. We compared the results with that of the N2V
method acting directly on the sinogram domain. Figure 5 presents the output sinograms and the reconstructed
images of the experiments with the low-dose condition of I, = 1 x 10*and I, = 0.5 x 10*, respectively. As
shown in figures 5(c), (g), (k) and (0), N2V trends to over-denoise the sinogram and leads to loss of some lines in
the sinogram. The structures in the reconstructed images exhibit severe blurring and adhesion, especially in the
periphery. In contrast, the sinogram-domain network of SDBDNet, which uses the Dropblock layers instead of
the traditional convolutional layers, can make effective denoising to a certain extent while avoiding blurring
artifacts, as shown in figures 5(d), (h), (1) and (p). Please note that as a dual-domain method, SDBDNet pursues
moderate denoising rather than complete denoising in the sinogram domain, such that structures are preserved
as well as possible. Table 1 lists the quantitative measures, including average PSNR and SSIM, of each method
with the low-dose conditions of Iy = 1 x 10*and I = 0.5 x 10%, respectively. All average PSNR and SSIM values
were calculated using the corresponding normal-dose CT images. The quantitative results demonstrate that the
proposed SDBDNet offers clear advantages. In experiments with the low-dose condition of I, = 1 x 10%,
SDBDNet achieves an average PSNR advantage of 0.89 db and an average SSIM advantage 0f 0.010 compared to
other non-supervised methods. In experiments with the low-dose condition of I, = 0.5 x 10*, SDBDNet shows
an average PSNR advantage of 1.04 db and an SSIM advantage of 0.013 compared to other non-supervised
methods. Visual comparisons are presented in figures 6 and 7. Post-processing denoising methods that operate
solely in the image domain are prone to losing structure details or generating pseudo-structures due to the lack
of considering the sinogram. In contrast, as a dual-domain denoising method, SDBDNet presents clearer and
more accurate image structure details. On the other hand, dual-domain methods with conventional CNN
denoiser on the sinogram domain would introduce blurring artifacts because of the noise characteristics, which
are not shown in the results of our SDBDNet due to our reasonable denoising control. In general, the image
results demonstrate that SDBDNet can achieve outstanding denoising effects. Specifically, in figure 6(i), the
elliptical structure pointed by the left arrow shows the shape closest to the reference, while other methods show
excessive blur or deformation. Even the supervised method RED-CNN causes additional protrusion in the
upper left corner of this structure. The crescent shadow structure pointed by the right arrow also shows the best
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(a) Normal-dose ) Low-dose ) N2V ( ) SDBDNet (SD)
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Figure 5. The sinogram and image results of the sinogram-domain denoising experiments with the low-dose condition of
I, = 1 x 10 (in figures (a)~(h)) and I, = 0.5 x 10* (in figures (i)~(p)). The display windows are set to [—820, 380] HU.

Table 1. comparison (psnr(db)/ssim) of different methods on the AAPM
dataset with the low-dose condition of Iy = 1 x 10*(1%) and
Iy =0.5 x 10%(0.5%).

I,=1x10* I, =05 x 10*
Method PSNR SSIM PSNR SSIM
Low-dose 31.75 0.793 29.18 0.724
NLM (Traditional) 35.95 0.899 35.13 0.880
BM3D (Traditional) 36.45 0.909 35.76 0.898
Noise2Void (Self) 36.81 0.917 35.83 0.901
Noise2Inverse-v2 (Self) 34.41 0.897 33.85 0.880
Noise2Inverse-v4 (Self) 33.44 0.883 3291 0.864
ETSRP (Self+Dual) 31.25 0.876 30.92 0.864
Proposed SDBDNet 37.70 0.927 36.87 0.914
RED-CNN (Supervised) 38.04 0.932 37.20 0.921

shape restoration without forming adhesion with the cavity area below, while other comparison methods exhibit
deformation and confusion. In figure 7(i), as shown in the zoomed-in area, SDBDNet restores the three elliptical
structures with high quality while keeping the dot structure pointed by the second arrow on the left from
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(a) Normal-dose (b) Low-dose

(f) N2Inverse-v2  (g) N2Inverse-v4 (h) ETSRP (i) SDBDNet (j) RED-CNN

Figure 6. Visual comparison of different methods on the AAPM dataset with the low-dose condition of Iy = 1 x 10™. The display
windows are set to [—420, 400] HU.

(a) Normal-dose (b) Low-dose

3 bﬁ &

(f) N2Inverse-v2 ) N2Inverse-v4 (h) ETSRP ) SDBDNet (j) RED-CNN

Figure 7. Visual comparison of different methods on the AAPM dataset with the low-dose condition of Iy = 0.5 x 10*. The display
windows are set to [—740, 230] HU.

disappearing. In contrast, unsupervised learning methods N2V, ETSRP and even the supervised method RED-
CNN failed to protect the dot structure. The results of both versions of N2Inverse exhibit high blurring.
Although NLM shows higher sharpness at the dot structure, its effect on the three elliptical structures are bad.

4.2. Experiments on the LoDoPaB dataset
The LoDoPaB dataset (Leuschner et al 2021) is a simulated low-dose CT dataset that consists of over 40 000 out-
of-order normal-dose CT image slices with a size 0of 362 x 362 pixels. In our experiments, we selected 2560 slices
from this dataset, of which 2048 slices for training, 256 slices for validation, and 256 slices for testing. To ensure
that the whole image was in the imaging field, we padded the original images to 512 x 512 pixels using zero-
padding around them. We performed experiments with two low-dose conditions I, = 1 x 10%(1%) and
Iy = 0.5 x 10%(0.5%) on this dataset. For the parameters of the proposed SDBDNet, we set 5 = 0.5, r=0.2,
A = 1.0 for experiments with the low-dose condition of [y = 1 X 10* and B8=0.5,r=0.3, A\ = 0.5 for those with
the low-dose condition of I, = 0.5 x 10*.

Table 2 presents the quantitative results (average PSNR and SSIM) of each method. The proposed SDBDNet
demonstrates significant advantages in terms of these metrics. In experiments with the low-dose condition of
Iy=1 x 10* SDBDNet achieved an advantage of 1.11 db in average PSNR and 0.017 in average SSIM compared
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(a) Normal-dose (b) Low-dose

(f) N2Inverse-v2  (g) N2Inverse-v4 (h) ETSRP (i) SDBDNet (j) RED-CNN

Figure 8. Visual comparison of different methods on the LoDoPaB dataset with the low-dose condition of Iy = 1 x 10* The display
windows are set to [—420, 400] HU.

Table 2. Comparison (psnr(db)/ssim) of different methods on the
LodoPaB dataset with the low-dose condition of I, = 1 x 10* (1%)and
Iy =0.5 x 10*(0.5%).

I,=1x10* Iy=0.5 x 10*
Method PSNR SSIM PSNR SSIM
Low-dose 31.31 0.785 28.50 0.693
NLM (Traditional) 36.27 0.881 34.56 0.834
BM3D (Traditional) 37.47 0.914 35.92 0.880
Noise2Void (Self) 37.71 0.902 36.05 0.871
Noise2Inverse-v2 (Self) 36.69 0.891 34.60 0.801
Noise2Inverse-v4 (Self) 34.07 0.808 32.70 0.795
ETSRP (Self+Dual) 31.96 0.851 32.00 0.819
Proposed SDBDNet 38.82 0.931 37.45 0.898
RED-CNN (Supervised) 39.06 0.949 37.88 0.938

to other non-supervised methods. In experiments with the low-dose condition of I, = 0.5 x 10* SDBDNet
demonstrated an advantage of 1.40 db in average PSNR and 0.018 in average SSIM. The visual comparisons are
presented in figures 8 and 9. As shown in the left zoomed-in area of figure (i), SDBDNet successfully retains the
white dot structure pointed by the arrow while performing effective denoising, which has not been presented in
other learning-based methods. In the right zoomed-in area, SDBDNet performs a good restoration of the shape
and length of the curved shadow structure with low contrast in the image, showing the closest approximation to
the reference image. As a contrast, even the supervised learning method RED-CNN failed to restore these two
image details. In figure 9, SDBDNet also shows effective restoration to image structures. As shown in the above
zoomed-in area of figure 9(i), while ensuring that the area pointed by the arrow is not excessively blurred,
SDBDNet does not recognize the white-dot noise in the lower right corner as a structure and incorrectly retains
itlike N2V and RED-CNN. In the lower zoomed-in area, SDBDNet clearly restores the bladed structure
indicated by the lower arrow without blurring the notch indicated by the upper arrow, outperforming all the
other non-supervised comparison methods. Table 3 presents the comparison of each learning-based method in
terms of the parameter size, training time and inference time in the experiments on the LodoPaB dataset with the
low-dose condition of [, = 1 x 10*. As dual-domain methods, our proposed SDBDNet and ETSRP require
more time for training and inference because of the dual-domain denoising and the embedded reconstructions.
Since SDBDNet contains two reconstructions and an averaging, its inference time is more than double that of
ETSRP. However, it is still at a fast level and will not show obvious disadvantages in applications. In terms of the
amount of network parameters, SDBDNet does not rely on a large number of parameters, even less than the
single-domain method Noise2Inverse.
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(f) N2Inverse-v2  (g) N2Inverse-v4 (h) ETSRP (i) SDBDNet (j) RED-CNN

Figure 9. Visual comparison of different methods on the LoDoPaB dataset with the low-dose condition of I, = 0.5 x 10*. The display
windows are set to [—420, 600] HU.

Table 3. The parameter size, training time and inference time of different
learning-based methods in the experiments on the LodoPaB dataset with
the low-dose condition of I, = 1 x 10*(1%).

Method Parameters Training Inference
Noise2Void (Self) 1.77M 16 h 0.03 s
Noise2Inverse-v2 (Self) 2.58 M 13h 0.02s
Noise2Inverse-v4 (Self) 2.58 M 13h 0.05s
ETSRP (Self+Dual) 248 M 79h 0.22s
Proposed SDBDNet 248 M 56 h 0.51s
RED-CNN (Supervised) 1.77 M 15h 0.04s

4.3. Analysis of experimental results

Experiments on the two datasets demonstrate that the proposed SDBDNet outperforms popular denoising
methods including traditional non-learning methods and self-supervised learning-based methods, in LDCT
denoising. The quantitative and visual results both confirm the effectiveness and improved performance of the
proposed method.

Based on both quantitative and visual results, it is evident that the performance of Noise2Inverse and ETSRP
is unsatisfactory in our experiments. We observed lower evaluation indices and poor image sharpness in these
methods. Furthermore, splitting the sinogram into four parts resulted in worse denoising performance than
splitting it into two parts for Noise2Inverse. This is because both Noise2Inverse and ETSRP use significantly less
sinogram data to reconstruct images after splitting. In our experiments, the total number of imaging angles was
360, so that the sub-sinograms after the half split came from 180 angles, while the sub-sinograms after the four-
part split came from 90 angles. In this case, the reconstructed images would be severely noisy and blurred, which
negatively affected subsequent denoising results. These results validate the effectiveness of our interpolation and
correction scheme for constructing sub-sinograms. On the other hand, ETSRP applies a classical CNN directly
to denoise the sinogram without proper control, thereby worsening its performance due to the blurring from
inappropriate sinogram denoising. This underscores the importance of our proposed SDBDNet’s sinogram-
domain denoising improvement.

Moreover, based on the visual results, dual-domain denoising is advantageous in restoring details compared
to pure image-domain denoising. As demonstrated in figures 7-9, the proposed SDBDNet outperforms N2V
and even the supervised method RED-CNN in the processing of tiny structures in images. This highlights the
advantage of preserving details through dual-domain denoising.
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Table 4. comparison (psnr(db)/ssim) of ablation experiments on the
LodoPaB dataset with the low-dose conditions of I, = 1 x 10*(1%)
andI, = 0.5 x 10*(0.5%).

I,=1x 10* I, =0.5 x 10*
Condition PSNR SSIM PSNR SSIM
Low-dose 31.31 0.785 28.50 0.693
r=20 38.48 0.922 36.98 0.891
a=1 37.53 0.922 36.58 0.888
a=0 37.21 0.913 37.08 0.884
None BP 38.68 0.927 37.28 0.889
Proposed SDBDNet 38.82 0.931 37.45 0.898

4.4. Ablation experiments

We performed ablation experiments on the LoDoPaB dataset, with the low-dose conditions of I, = 1 x 10* (1%)
and I, = 0.5 x 10* (0.5%), to verify the effectiveness of each module in the proposed SDBDNet. The settings of
the ablation experiments are as follows:

+ Toassess the function of the DropBlock module, we performed experiments without DropBlock (i.e. r = 0)
while keeping other parameters unchanged (experiments on different values of r are presented in section 4.5 as
part of the parameters experiments).

+ Tovalidate the role of weighted average, we set o« = 1 and ax = 0, respectively, while keeping other parameters
unchanged. The former value corresponds to the condition when the sinogram before reconstruction is
completely obtained by the sinogram-domain network and the latter corresponds to those without denoising
(experiments on different values of (3 are presented in section 4.5 as part of the parameters experiments).

+ To evaluate the effectiveness of joint training of the dual-domain networks, we turned off the back-
propagation of the OS-SART layer, kept other parameters unchanged, and performed experiments. In this
case, the training of the sinogram-domain network is not affected by the loss of the image domain but is
wholly determined by the loss of the sinogram domain itself.

Table 4 presents the quantitative results of the ablation experiments with the low-dose conditions of
Ip=1 x 10*and I, = 0.5 x 10 respectively. The PSNR and SSIM results demonstrate that each designed
component makes a contribution to the denoising performance of the proposed SDBDNet. Specifically, the
dual-domain joint training strategy, the DropBlock module in the sinogram domain, and the weighted average
of the sinogram all helped to improve the denoising performance.

4.5. Parameters experiments

The proposed SDBDNet has three essential parameters: the dropout ratio r of the DropBlock layers, the scaling
factor 3 of the weighted average, and the coefficient ) that balances the dual-domain losses. Our experiments on
different datasets with different low-dose conditions show that the parameters for achieving good performance
vary within a reasonable range. Specifically, in our experiments, we found that a dropout ratio of 0.2 or 0.3 for
the DropBlock network and a scaling factor between 0.5 and 0.75 for the weighted average perform well. In fact,
atoo-large dropout ratio can undermine the denoising ability of the sinogram-domain network, while a too-
small value may not effectively suppress blurring artifacts. With regard to the weighted average, a near half-to-
half weight can better leverage the advantage of dual-domain denoising than a biased one. Moreover,
considering that the weights are further normalized based on the maximum value, a scaling factor slightly
greater than 0.5 is reasonable, which guides us in adjusting this parameter. Figure 10 shows the line charts of the
average PSNR and SSIM results of the experiments with different Gand r. We compared the results of the
experiments on the LodoPaB dataset with the low-dose conditions of Iy = 0.5 x 10 (0.5%) and different 3
whose values were taken every 0.125 from 0 to 1. As shown in figure 10(a), as 3 increases, the average PSNR and
SSIM show a trend of first increasing and then decreasing, and reach the highest values at 3 = 0.5 and 0.375
respectively. This reflects the impact of the weights on the final denoising performance and the importance of
balancing the dual-domain denoising. In the experiments on the LoDoPaB dataset with the low-dose conditions
of Iy =1 x 10* (1%), we compared the average indicators of the results under different dropout ratios r whose
values were taken every 0.1 from 0 to 0.5. As shown in figure 10(b), the average PSNR and SSIM also present an
increasing and then decreasing trend with the raising of r, and both reach their maximums at r=0.2. The
comparison shows that the selection of the dropout ratios  has a notable impact on the denoising performance
of SDBDNet. This is in line with the principle of denoising with the dropblock layers. In fact, a too-small r cannot
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Figure 10. The line charts of indicators under different Fand r. (a): the average PSNR and SSIM results of the experiments with
different weighting scaling factors 3 on the LodoPaB dataset with the low-dose conditions of I, = 0.5 x 10, The indicators show a
trend of first rising and then falling, and reach the highest values at 3 = 0.5 and 0.375 respectively. (b): the average PSNR and SSIM
results of the experiments with different dropout ratios r on the LodoPaB dataset with the low-dose conditions of Iy = 1 x 10*. The
indicators show a trend of rising then falling, and both reach their maximums when r = 0.2.

Table 5. comparison (psnr(db)/ssim) of different A
on the LodoPaB dataset with the low-dose conditions
of [y = 1 x 10*(1%)and I, = 0.5 x 10*(0.5%).

I,=1x 10* I, =0.5 x 10*
A PSNR SSIM PSNR SSIM
0.25 38.77 0.932 37.33 0.898
0.50 38.68 0.930 37.45 0.898
0.75 38.69 0.928 37.31 0.897
1.00 38.82 0.933 37.28 0.890
2.00 37.97 0.932 36.87 0.887

effectively suppress the blurring artifacts, while an over-large one will lead to excessive discarding of
information, resulting in ineffective denoising.

We also performed experiments with different A values to verify their impact on the denoising performance
of SDBDNet on the LoDoPaB dataset with the low-dose conditions of I, = 1 x 10*(1%) and I, = 0.5 x 10*
(0.5%). Table 5 presents the quantitative results. We found that, within a certain range, the difference of A has
little effect on the denoising results, but a too-large one could significantly reduce the denoising performance,
which confirms the importance of maintaining dual-domain balance during network training.

5. Conclusion

We present SDBDNet, a self-supervised dual-domain deep learning method for LDCT denoising. SDBDNet
conducts self-supervised denoising in both the sinogram and image domains and performs dual-domain joint
learning to improve denoising performance. To generate paired training data with uncorrelated noise,
SDBDNet splits sinograms into two parts and restores them with interpolation and learning-based correction.
In addition, to achieve noise-adapted denoising and control the denoising strength in the sinogram domain,
SDBDNet incorporates Dropblock layers and utilizes a weighted average of the treated and noisy sinograms.
SDBDNet demonstrates high performance in LDCT denoising and outperforms popular non-supervised
methods. In certain cases, it could even show advantages over supervised post-processing methods.

As aself-supervised method, SDBDNet offers greater application value than classical supervised approaches.
The effective processing in the dual domain enables it to handle the details and structure of CT images well. In
clinical work, its characteristic of not requiring paired or normal-dose data makes it more feasible. Physicians
need only perform low-dose scans of patients to obtain the data for network training and inference, rather than
potentially harmful normal-dose scans or repeated scans. For data belonging to different patients generated by
the same machine with the same imaging parameters, they can be considered to approximately follow the same
distribution and can be denoised using a trained or rapidly fine-tuned network. Although the training and
inference time required by our SDBDNet are relatively long compared to image-domain methods, the fact that it
does not necessitate repeated and complete training, and its inference speed remains fast, ensures its practicality.
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Although SDBDNet shows good performance in self-supervised LDCT denoising, it still suffers from some
limitations. Due to the use of traditional denoising networks in the image domain, SDBDNet, like other image
domain methods, does not completely avoid blurring of the reconstructed images, which is reflected in our
results. Second, embedding two reconstructions also makes SDBDNet require alot of training and inference
time beyond the image-domain methods. In addition, SDBDNet contains several non-learning
hyperparameters, the adjustment during training will significantly increase the workload. In terms of the
improvement for SDBDNet, one open challenge is how to generate paired data with independent noise while
keeping the original noisy sinogram as complete as possible rather than splitting it in half. In addition, it is worth
studying to reduce the number of hyperparameters while ensuring the denoising performance. Moreover, using
fully-networked reconstruction to increase the efficiency of training and inference is also a meaningful research
topic. We will focus on these issues in future research.
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