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Abstract
Objective. Self-supervised learningmethods have been successfully applied for low-dose computed
tomography (LDCT) denoising, with the advantage of not requiring labeled data. Conventional self-
supervisedmethods operate only in the image domain, ignoring valuable priors in the sinogram
domain. Recently proposed dual-domainmethods address this limitation but encounter issues with
blurring artifacts in the reconstructed image due to the inhomogeneous distribution of noise levels in
low-dose sinograms.Approach.To tackle this challenge, this paper proposes SDBDNet, an end-to-end
dual-domain self-supervisedmethod for LDCTdenoising.With the network designed based on the
properties of inhomogeneous noise in low-dose sinograms and the principle ofmoderate sinogram-
domain denoising, SDBDNet achieves effective denoising in dual domainswithout introducing
blurring artifacts. Specifically, we split the sinogram into two subsets based on the positions of detector
cells to generate paired training datawith high similarity and independent noise. These sub-sinograms
are then restored to their original size using 1D interpolation and learning-based correction. To
achieve adaptive andmoderate smoothing in the sinogramdomain, we integrateDropblock, a type of
convolution layerwith regularization, into SDBDNet, and set aweighted average between the
denoised sinograms and their noisy counterparts, leading to awell-balanced dual-domain approach.
Main results.Numerical experiments show that ourmethod outperforms popular non-learning and
self-supervised learningmethods, demonstrating its effectiveness and superior performance.
Significance.While introducing a novel high-performance dual-domain self-supervised LDCT
denoisingmethod, this paper also emphasizes and verifies the importance of appropriate sinogram-
domain denoising in dual-domainmethods, whichmight inspire futurework.

1. Introduction

Computed tomography (CT) is an important imaging technique inmedical diagnosis. However, excessive x-ray
doses fromCT scans can potentially harmpatients. Tomitigate this risk, it is necessary to reduce the x-ray dose.
In thefield ofmedical CT, the ‘as Low as Reasonably Achievable’ (ALARA) guideline (deGonzález et al 2010)was
introduced tominimize radiation exposure during CTdiagnosis. Nonetheless, low-dose CT (LDCT) tends to
introduce noticeable noise and artifacts in the reconstructed images compared to normal-dose CT.Hence,
LDCTdenoising has always been a hot research topic in themedical imaging community.

Denoising the reconstructed image or sinogramdirectly with classical image denoisingmethods is
convenient and practical. For instance, local averagingmethods (Yaroslavsky 2012) based on smoothing filters,
and nonlocal averagingmethods likeNLM (Buades et al 2005) andBM3D (Dabov et al 2007), which rely on
image internal similarity priors, can be employed for LDCTdenoising. Thesemethods are easy to implement
and fast to run based on explicit degradationmodels. However, the noise characteristics of both sinograms and

RECEIVED

6November 2023

REVISED

22 January 2024

ACCEPTED FOR PUBLICATION

15 February 2024

PUBLISHED

26March 2024

© 2024 Institute of Physics and Engineering inMedicine

https://doi.org/10.1088/1361-6560/ad29ba
https://orcid.org/0000-0001-6558-1174
https://orcid.org/0000-0001-6558-1174
https://orcid.org/0000-0002-6093-6623
https://orcid.org/0000-0002-6093-6623
https://orcid.org/0000-0002-9537-3808
https://orcid.org/0000-0002-9537-3808
mailto:k.chen@strath.ac.uk
mailto:hongwei.li91@cnu.edu.cn
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/ad29ba&domain=pdf&date_stamp=2024-03-26
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/ad29ba&domain=pdf&date_stamp=2024-03-26


images of LDCTdonot fully conform to the assumptions of thesemethods,making it challenging for them to
achieve satisfactory results.

In recent years, deep learningmethodswith convolutional neural networks (CNNs) have been proposed for
image denoising with great success. Popular network architectures includeDnCNN (Zhang et al 2017), FFD-Net
(Zhang et al 2018), CBD-Net (Guo et al 2019), andmany variations ofUNet (Ronneberger et al 2015). They
achieve better results than traditionalmethodswhile using significantly less time for inference. In the field of
LDCTdenoising, numerous networkswith different structures have been proposed. Representative examples
include FBPConvNet (Jin et al 2017), RED-CNN (Chen et al 2017) andCTformer (Wang et al 2023), which
achieve powerful denoising effects on LDCT images. Some othermethods perform supervised learning
denoising in both the sinogramdomain and the image domainwith a reconstruction operator for domain
transformation, thus achieving excellent denoising performance. Examples of the representativemethods are
DDPNet (Ge et al 2022), DuDoUFNet (Zhou et al 2022) andCLEAR (Zhang et al 2021).

Although deep learningmethods have shown exemplary performance in image denoising tasks,mainstream
supervised denoisingmethods require a large amount of labeled data for network training, which is difficult to
collect in real applications. In fact, in clinical diagnosis, it is impractical to scan the same patient twice at different
doses to obtain paired data. Additionally, other factors, such as uncontrollablemotion due to respiration,
further prevent high-quality labeled data frombeing collected. To obtain labeled and paired datamore easily,
some generativemethods have been utilized in LDCTdenoising. Some of themgenerate data by physical
models. For example, Zeng et al simulated low-dose sinograms fromhigh-dose sinograms using aCTprojection
model to obtain paired data (Zeng et al 2015). However, the generated data from suchmethods is not of high
quality, and it remains a big challenge to generate realistic data of CT. Some others of the generativemethods
directly generate data through a deep-learningmodel. Themost representative ones are based onGAN (Creswell
et al 2018), such asGAN-CIRCLE (You et al 2019), Cycle-Free CycleGAN (Kwon andYe 2021), AdaIN-Based
Tunable CycleGAN (Gu andYe 2021), IdentityGAN (Li et al 2020) andNE-GAN (Niu et al 2021). TheseGAN-
basedmethods use unpaired noisy-clean data, avoiding the need for paired data successfully. However,most of
them rely on the cyclic consistency loss of GAN,which usually causes poor stability during training.Moreover,
ensuring the accuracy of these generativemodels in LDCTdenoising is not easy. Therefore, the application of
supervised denoisingmethods for practical diagnosis is limited.

To avoid the reliance on labeled data,many unsupervised learningmethods have been proposed in recent
years. Thesemethods aremore practical and have also achieved good results in image denoising. One
representativemethod isNoise2Noise (N2N) (Lehtinen et al 2018), which trains networks with paired noisy
images. N2N shows that trainingwith two images of the same scenewith uncorrelated and zero-mean noise can
also achieve image denoising. Inspired byN2N, severalmethodswere proposed for LDCTdenoising (Hasan et al
2020,Won et al 2021,Wu et al 2021, Fang et al 2021, Yuan et al 2020, Zhang et al 2022, 2021). However, an
inevitable problemwhen applying thesemethods in LDCTdenoising is that paired two low-doseCT images are
hard to obtain. Another class ofmethods learns priors in only normal-dose CT images by generativemodels and
incorporates them into low-doseCT reconstruction. Fabian et al proposed PatchNR (Altekrüger et al 2023) to
learn a regularization term from the patches of a fewnormal-dose imageswith normalizing flows (Kobyzev et al
2020) and used it in iterative low-dose reconstruction. He et alutilized a score-basedmodel (Song and
Ermon 2020) to learn priors in normal-dose images and conducted iterative reconstruction, thus proposing
EASEL (He et al 2022). Liu et al proposedDn-Dp (Liu et al 2023)which adopts diffusionmodels (Croitoru et al
2023) to learn priors in normal-dose images and solvemultiplemaximum-a-posteriori problems iteratively to
achieve denoising for low-dose images. Suchmethods only require normal-dose images for training and achieve
effective LDCTdenoising. However, the requirement for a large amount of normal-dose images still limits their
application to situationswith only low-dose data. In addition, suchmethods usually require iterative solving,
which oftenmeans larger time consumption.

Recently, self-supervised learningmethods have also been proposed for image denoising which explore and
utilize the local similarity of the noisy image itself. Deep image prior (DIP) (Ulyanov et al 2018) leverages the
regularization effect of networks and achieves denoising by early terminating the training process of a generative
network.Noise2Void (Krull et al 2019) andNoise2Self (Batson andRoyer 2019)were proposed for image
denoising by predicting pixel values based on their local noisy surroundings, under the assumption that noises
among neighboring pixels are independent. However, this assumption is not applicable in LDCT since the noise
in aCT image is known to be correlative. For LDCTdenoising, Noise2Sim (Niu et al 2022)was proposed to
denoise the correlative and structural noises by trainingwith adjacent slices in the same 3DCT image.
Noise2Inverse (Hendriksen et al 2020) splits the sinogram into several equal parts in terms of the projection
angles and then reconstructs them into paired noise-independent images for network training. Although these
methods have demonstrated promising results, they are essentially pure post-processingmethods that operate
only in the image domain andmake no use of the sinogram. In fact, asmore originalmeasurements, sinograms
contain lots of useful priors, abandoning the use of sinograms oftenmeans losing them.Hence, the utilization of
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sinograms in self-supervised LDCTdenoisingmethods has begun to attract attention. To explore priors in the
sinogramdomain, Zhou et al utilized the similarity of sinogramdata from adjacent projection angles for self-
supervised denoising (Zhou et al 2022). Furthermore,Wagner and Pfaff et al proposed a dual-domain self-
supervisedmethod (Wagner et al 2023). They split the sinogramby projection angles, connected the sinogram
domain and image domainwith a reconstruction operator, and trained the entire networkwith the image-
domain loss. Niu andWang et al appliedNoise2Sim to both the sinogram and image domains, connected them
with a reconstruction operator, and used a dual-domain loss to train the network, resulting in SSDDNet (Niu
et al 2022). These dual-domainmethods effectively utilize sinograms and improve denoising performance based
on the image post-processingmethods.

Although existing dual-domain self-supervised LDCTdenoisingmethods do consider the sinogramdomain
and obtain positive results, they treat sinograms as general images and overlook important properties of low-
dose sinograms. In fact, the noise levels of pixels in a low-dose sinogram are often inhomogeneous due to the
nature of theCTprojection process (Zhu et al 2012), which results in blurring artifacts in the reconstructed
imagewhen treated by an isotropic global denoiser like classic CNNs. If this degradation occurs, it would be
challenging to deal with it in the image domain for self-supervised denoising. Another issue is that the denoising
strength in the sinogramdomainmust bewell-controlled to avoid introducing new secondary artifacts in the
reconstructed image. This is because each single sinogrampixel would produce a global effect in the
reconstruction process. So, denoising the sinogram should be done carefully such that only noise is removed.
Unfortunately, existing dual-domain self-supervisedmethods do not address these issues but instead utilize
classic CNNs for sinogram-domain denoising directly. Consequently, their final output imagesmight suffer
fromblurring artifacts or streaks.

In this paper, we propose SDBDNet, an end-to-end dual-domain self-supervised deep learningmethod for
LDCTdenoising that optimizes the sinogram-domain denoising by explicitly taking the important properties of
the sinogram into consideration. For self-supervised learning, we split the sinogram into two equal and non-
overlapping parts based on the position of detector cells to acquire training data with good similarity and
uncorrelated noise. Splitting the sinogramwill significantly reduce the amount of data that can be used for
reconstruction, whichwould introduce over-smoothing and artifacts in the reconstructed image. To tackle this
problem,we use one-dimensional (1D) interpolation and learning-based correction to restore the sub-
sinograms to their original full size. To tackle the inhomogeneous noise levels in the sinogram, our SDBDNet
incorporates Dropblock layers to adaptively localize the effect of convolution for denoising, thus effectively
reducing the blurring artifacts. In addition, to control the denoising strength of the sinogramdomain and
balance the effects of the sinogram-domain and image-domain denoising on the final result, a weighted
averaging strategy to balance the denoised and noisy sinograms is proposed to further reduce possible artifacts
due to over-smoothing.

Ourwork can be summarized as follows:

• Wepropose an end-to-end dual-domain self-supervised neural networkmodel for LDCTdenoising, which
just assumes the availability of a representable dataset consisting of low-dose sinograms. For the first time, a
weighting strategy is explicitly built into the proposedmodel to balance the behaviors of sinogram-domain
denoiser and image-domain denoiser.

• Different frommost other self-supervised LDCTdenoisingmethods, we attach great importance to
sinogram-domain denoising andmake effective improvements. For thefirst time, we propose to incorporate
the noise properties of low-dose sinograms into designing the network architecture in dual-domain self-
supervisedmethods, which helps to avoid introducing secondary artifacts.

• Through numerical experiments, we demonstrate that our SDBDNet achieves superior performance in LDCT
denoising compared to some traditional and self-supervised deep-learning denoisingmethods.

2. Relatedwork

2.1. Image-domainmethods
Unsupervised learning is a convenient andwidely used approach for image denoising, withN2N (Lehtinen et al
2018) being a prominent example. The idea ofN2Nhas been extended to the field of LDCTdenoising, e.g.
Noise2Sim (Niu et al 2022) andNoise2Inverse (Hendriksen et al 2020), and achieved promising results.

Noise2Noise proposes a denoisingmethod that uses pairs of noisy images of the same scenewithout clean
labels, under the assumption of zero-mean and uncorrelated noise. N2Nhas demonstrated that its performance
is comparable to supervisedmethodswhen the number of training samples is large enough.N2N trains
networks using noisy paired images to supervise each other:
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N
x n x nargmin

1
; , 1

i
i i i i1 2 2
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where xi is the ideal clean signal of ith training image,ni1 andni2 are two independent noise distributions. The
function  is the denoising neural network (NN) parameterized by θ, andN is the total number of the training
samples.

AlthoughN2N eliminates the need for labeled training images, acquiring two different noisy observations of
the same scene, particularly inCT, can be also difficult. To address this issue, Noise2Sim (Niu et al 2022) replaces
the needed paired noisy imageswith neighboring slices chosen from the same 3DCT image. The denoising
network is then trained byminimizing the following loss:

N
x n x nargmin

1
; , 2

i
i i i i i 2

2å dq q= + - + +
q

( ) ( ) ( )*  

whereni and ni are two different noise distributions. δi is the difference between the uncontaminated content in
the two similar image slices. Noise2Simdoes not require twonoisy images of the same scene, but the need for
neighboring slicesmakes it not a strict self-supervisedmethod.

According to the characteristics of CT reconstruction, Allard proposed a strict self-supervisedmethod
Noise2Inverse (Hendriksen et al 2020) for LDCTdenoising by generatingmultiple noisy observations from the
same sinogram.Defining an operator v : R R R R, ,...,N N N n N N n N N n Nv d v d v d v d´ ´ ´ ´( )( ) ( ) ( ) thatmaps aNv×Nd

object (e.g. a sinogram) into n non-overlapping sub-objects of the same size, Noise2Inverse splits a low-dose
sinogram si into n sub-sinograms by applying v :

s s s s, ,..., , 3i i in v i1 2 =( ) ( ) ( )

whereNv andNd are the number of projection angles and detector cells, respectively.With a reconstruction
operator: R RN n N N Nv d ´ ´( ) (e.g. FBP or SART), each sub-sinogram sij is reconstructed into aN×N
sized noisy image x ij :

x s . 4ij ij= ( ) ( )

Since there are no explicit correlations between the sub-sinograms, the resulting images can be treated as
multiple observations of the same scenewith uncorrelated noise. Similar toN2N,Noise2Inverse trains networks
with one image as the label and the average of the other images as the input:

N n
x xargmin
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Noise2Inverse shows an effective way to obtain different noisy observations by sinogram-splitting. However,
splitting the sinogram into several parts will result in blurring or even sparse-angle artifacts in the reconstructed
images as only half or even less data are used for each separate reconstruction.

Although the aforementioned image-domainmethods exhibit effective denoising capabilities, they
disregard the valuable priors in the sinogramdomain.Without the participation of the sinogram, the use of
information existing in themeasurement could be inadequate, and itmight also lead to inconsistencies between
the reconstructed image and its corresponding sinogramduring the denoising process, resulting in excessive
smoothness and blurring.

2.2.Dual-domainmethods
In order to achievemore efficient LDCTdenoising, self-supervisedmethods concerning the sinogramdomain
have been proposed. Zhou et al (2022) employed the sinogramdata of adjacent projection angles to supervise
each other for self-supervised denoising.Wagner et al (2023) employed amethod to split each sinogram into two
parts and set up networks to denoise the sub-sinograms. Through an embedded operator, the denoised sub-
sinograms are reconstructed into images for self-supervised denoising, similar towhatNoise2Inverse does.Niu
et al extendedNoise2Sim to the sinogramdomain and proposed SSDDNet (Niu et al 2022). They used adjacent
slices to supervise each other in both the sinogram and image domains.With the utilization of priors in the
sinogramdomain, these dual-domainmethods achieve good denoising performance. However, the image
blurring caused by sinogram splitting has not been addressed in these dual-domainmethods, and denoisingwith
adjacent slices is still not strictly self-supervised.

While sinogram-domain denoising has gained attention in the aforementioned dual-domainmethods, they
all employ denoising strategies designed for general images, overlooking the unique noise characteristics of low-
dose sinograms. In fact, sinograms tend to suffer fromnon-stationary noise distribution (Deng et al 2019).
Global isotropic denoisers likeGaussian filters and classical CNNs lead to blurring and artifacts easily when
applied for sinogram-domain denoising (Zhu et al 2012). Figure 1(d) shows the reconstructed imagewith a
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sinogramdenoised by a typical self-supervisedmethodNoise2Void (Krull et al 2019) embeddedwith a classical
deep learning denoiserDnCNN (Zhang et al 2017), where the blurring artifacts are obviouswhen compared to
the result by applying the samemethod in the image domain as shown infigure 1(c). It is well-known that each
pixel in the sinogramhas a global influence on the reconstruction process, and the quality of the reconstructed
image is highly sensitive to small changes in the sinogram. Thus, effectivelymanaging the denoising intensity in
the sinogramdomain becomes paramount. However, existing dual-domain self-supervised denoisingmethods
do not take this into consideration. In contrast, our SDBDNet employsDropblock layers to achieve adaptive
denoising of the non-uniformnoise levels in the low-dose sinogram, significantly reducing the blurring artifacts
in the reconstructed image. Additionally, SDBDNet employs an explicit weighted averaging process to balance
the influence of the sinogram-domain and image-domain denoising, effectively controlling the denoising
strength in the sinogramdomain, thereby further reducing the over-smoothing problem.

3.Method

SDBDNet consists of essentially three ingredients: the sinogram-domain network, the reconstruction layer, and
the image-domain network.We perform self-supervised denoising in both the sinogramdomain and the image
domain, and incorporate theOrdered-subset Simultaneous Algebraic Reconstruction Technique (OS-SART)
(Andersen andKak 1984) as the reconstruction layer. This sectionwill introduce these three ingredients in detail,
and illustrate the overall pipeline and the algorithmflow-chart of SDBDNet.

3.1. The sinogram-domain network
In the sinogramdomain, we achieve self-supervised denoising bymutual supervision of the low-dose data
corresponding to adjacent detector cells, and since they come fromdifferent rays, their noise distributions are
uncorrelated. Besides, the noise approximately follows a non-stationary Gaussian distribution (Zhu et al 2012).
Therefore, we can use adjacent pixels along the detector cells for self-supervised denoising since the basic
assumptions of theN2N (Lehtinen et al 2018) aremet. By extracting the sinogram at equal intervals and splitting
it into two parts, we can obtain a pair of sub-sinogramswith similar content and uncorrelated noise, which can
be used for training the self-supervised denoising network. Compared to the splitting strategy adopted in the
literature that splits a sinogram according to the projection angles, we choose amore rational approach: we use
the sinogramdata from all projection angles while splitting the sinogram into two equal parts in terms of the
positions of detector cells. It is known that the sinogramdata has stronger neighboring correlations along the
detector cells rather than along the projection angles (Wang et al 2006), thus our splitting strategy should lead to
a better pair of noisy observations.Mathematically, defining an operator d : R R R,N N N N N N2 2v d v d v d´ ´ ´( )( ) ( )

that splits aNv×Nd sized sinogram into two equal parts according to the parity of the indices of the detector
cells, we have:

s s s, , 6i o i e d i, , =( ) ( ) ( )

where si is the noisy sinogram, si,o and si,e are the two obtained sub-sinograms, respectively.
To address the sinogramhalving issue that arises from splitting, we utilize interpolation and a learning-based

correction to inpaint themissing sinogramdata, similar to somewidely used approaches for inpainting sparse-
angle CT sinograms.With a 1D linear interpolation operator  : R RN N N N2v d v d´ ´( ) that along the direction of
the data corresponding to each projection angle (rows of the sinogram), as shown infigure 2, we patch the half-
sized sub-sinograms to the full size while keeping the existing data unchanged:

s s

s s

,

. 7

i o i o

i e i e

, ,

, ,





¢ =

¢ =

( )
( ) ( )

Then, we performdata correction and self-supervised denoising on si o,¢ and si e,¢ through the sinogram-

domain network S which is parameterized by θS.We feed si o,¢ and si e,¢ into the network andmake each other as

Figure 1.Denoising performance ofN2VwithDnCNN in the image domain and sinogramdomain. The output image from
sinogram-domain denoising shows excessive blur at the periphery of the imagewith artifacts.
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their labels to train the network:

N
s s s sargmin

1
; ; . 8S
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, , 2
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By introducing themean squared error (MSE) loss function represented by mse , we can import the loss
function Sino of the sinogram-domain denoising network from (8):

s s s s; , ; , . 9Sino mse S i o S i e mse S i e S i o, , , ,    q q= ¢ ¢ + ¢ ¢( ( ) ) ( ( ) ) ( )

Thus, the denoised sinograms si,1 and si,2 is given by:
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With the above training strategy, the network can effectively performdata correction and unsupervised
denoising simultaneously. In fact, the learning process of the network on the real sinogramdata si k

real
,

corresponding to the kth detector cell can be expressed as:
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While on the interpolated data si k
intp
, corresponding to the kth detector cell can be expressed as:

s sargmin ; . 12S i k
intp

i k
real

, , 2
2q q= -

q
( ) ( )*  

Equation (11) demonstrates that when acting on real sinogramdata, the network learns to perform self-
supervised denoising, while equation (12) shows that when acting on interpolated data, the network learns to
correct the interpolated data. Consequently, the trained sinogram-domain network can effectively performboth
sinogram correction and denoising simultaneously.

Asmentioned earlier, CNNdenoisers with conventional convolution kernels have difficulties in dealingwith
inhomogeneous noise levels. One solution to this problem is tomodify the global action of convolution kernels

Figure 2.The flow chart of the proposed SDBDNet.
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and adjust the denoising strength in an adaptivemanner. In our study, we replaced the traditional convolutional
layer in the sinogram-domain networkwith theDropblock layer (Ghiasi et al 2018). TheDropblock layer has
been successful in image segmentation and recognition as a regularizationmethod for convolutional networks.
It performs dropout on the feature produced by each convolution kernel.When used for sinogram-domain
denoising, theDropblock layer discards part of the effect of each convolution kernel with a drop rate r instead of
acting on the entire sinogram. As a result, the denoising effect of each kernel is limited to only a portion of the
sinogram. This allows each convolution kernel to denoise only sinogram regionswhere the noise levels aremore
similar, effectively alleviating the problemof excessive denoising caused by global denoisers.

3.2. TheOS-SART layer
To construct a dual-domainmethod, we need to reconstruct sinograms into images with a reconstruction
operator: R RN N N Nv d ´ ´ .We select the ordered-subset simultaneous algebraic reconstruction technique
(OS-SART) (Andersen andKak 1984) as our reconstruction operator, since it is commonly used in theCT
community.We incorporateOS-SART into the dual-domain network as a layer to connect the sinogram and
image domains. After randomly permutating the reconstruction angles, we found that theOS-SART algorithm
with 1 iteration could reconstruct an image of high quality, andmore iterationswould not bring significant
improvements. Hence, we set the iteration number of theOS-SART layer to 1. In fact,more iterationswill
significantly increase the calculations of backpropagationwhen training the network, thereby increasing the
training time and storage requirements. In this case, an iteration number of 1 is a rational choice.

3.3. The image-domain network
In the imagedomain, the two images reconstructed fromthedenoised sinogramsareused as eachother’s labels to
train thedenoisingnetwork.However, insteadofdirectly utilizing the sinogramsoutput from the sinogram-domain
network,weopt for aweighted average of thedenoised sinograms and their correspondingoriginal noisy ones.The
primaryobjective of thisweighted average is to further control the sinogram-domaindenoising strength and restore
somedetails thatmayhavebeenblurredduring sinogram-domaindenoising.Although this reintroduces somenoise,
thenoise level is significantly reduced compared to thatwithout sinogram-domaindenoising.Moreover, the
reintroducednoiseundergoes processing in the image-domainnetwork,which shouldbe again effectively removed.

Theweights are calculated based on the column sumof the original noisy sinogram. It is known that larger
sinogram values correspond to higher noise levels (Deng et al 2019). As a simple strategy, we utilize the column
sums of the sinogram as an indicator of themagnitude of noise levels presented in each column. To obtain the
weights, we first sum the pixel values on each columnof the original noisy sinogram siwith an operator:
R RN N Nv d d´ , normalize it with itsmaximumvalue, and then use a suitable scalarβ ä [0, 1] to perform scaling
of theweight. In detail, the resultingweight vector is:

max

s

s
, 13i

i




a b
=

( )
( ( ))

( )*

wheremax is the operator to compute themaximumvalue of a vector. In order to correctlymultiplyαwith the
corresponding projection values in the sinogram,we stretch outα to sizeNv×Nd, with a row copy operator  :
R RN N Nd v d ´ , and defineNv×Nd sized odd–even indicatormatrices Io and Ie, where Io takes the value 1 in the
odd columns and 0 in the even columnswhile Ie= 1− Io is the opposite. In theweighted average,α corresponds
to theweight of the denoised sinograms si,1 and si,2, and (1−α) corresponds to the original noisy one si. Thus,
theweighted sinograms si,1 and si,2 are given by:
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Once the two averaged sinograms are obtained, we use theOS-SART layer (represented by) to reconstruct
them into images xi,o and xi,e:
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where 0 is theN×N sized initial image set as zero-values andω represents the relaxation parameter ofOS-
SART. The resulting images are then fed into the image-domain network as labels for each other to train the
denoising network I parameterized by θI:

N
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Algorithm1. SDBDNet

Input:The noisy sinogram si , initial image x 0i
0 =( ) , the odd–even indicatormatrices Io and Ie, the training iteration number n and the

relaxation parameterω forOS-SART.

Operator: , , , .d   
Networks: S parameterized by Sq , I parameterized by Iq .

Output:The denoisied image x i out, .

Training:

for k k n k0; ;= < ++ do

for every si in the training set

(1) Splitting the sinogram si into two parts, by:

s s s, .i o i e d i, , =( ) ( )

(2) Interpolating s s,i o i e, , to the full size, by:
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(3)Correcting and denoising si o,¢ and si e,¢ with the sinogram-domain network:
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(4) Solving theweighted average of the sinograms:
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(5)Reconstructing images using theOS-SART layer:
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(6)Denoising the images with the image-domain network:
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(7)Training the dual-domain denoising networkwith the dual-domain loss:

.Dual Sino Img  l= + *

end for

end for

Testing:

(1)Repeating the above processes (1)–(6) in the training stagewith thewell-trained networks S parameterized by Sq* and I parameterized

by Iq*.
(2)Taking the average of the two denoised images to obtain thefinal denoised image result.

x x x
1

2
.i out i i, ,1 ,2= +( )

The loss of the image-domain networks Img is given by:
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Thus, the denoised images xi,1 and xi,2 are given as:
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To combine the losses of the sinogram-domain and image-domain networks, we introduce a hyper-
parameterλ as theweighting parameter. The total loss Dual of the dual-domain network is given by:

. 19Dual Sino Img  l= + ( )*

During the testing phase, we compute the average of the output images from I to obtain thefinal denoising
result xi,out, as expressed by:
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x x x
1

2
. 20i out i i, ,1 ,2= +( ) ( )

3.4. Pipeline
Our proposed SDBDNet is an end-to-end solution that produces the denoised image directly from the noisy
sinogram, as illustrated infigure 2. In the sinogramdomain, we employ a 7-layerDnCNN (Zhang et al 2017)
(shown infigure 3), withDropblock (Ghiasi et al 2018) layers replacing the standard convolutional layers. In the
image domain, we utilize the network of RED-CNN (Chen et al 2017), which has shown excellent performance
on LDCT image denoising, as depicted infigure 4. The entire denoising process is outlined in algorithm 1.

4. Experiments

In this section, wewill evaluate the performance of our SDBDNet through experiments and ablation studies.
Our experiments were performed on two datasets: (1) the ‘2016NIH-AAPM-MayoClinic LowDoseCT

GrandChallenge dataset’ (AAPMdataset) (McCollough 2016) and (2) the ‘LoDoPaB dataset’ (Leuschner et al
2021). For both datasets, we utilized the normal-dose CT images as the ground truth and generated the clean
sinograms using a simulatedCT algorithmwith a fan beam source and 360 projection angles uniformly
distributed in the angular range [0, 2π], alongwith a linear detector consisting of 512 cells. To simulate radiation
with different doses, Poisson noise was added to the rawdata, given by

p
I

I
I I eIn , Poisson 21n

d
d

p

0
0⎜ ⎟

⎛
⎝

⎞
⎠

= - ~ ´ -{ } ( )

where p and pn represent the clean and noisy sinograms, respectively. The symbol I0 indicates the number of
incident photons, and Id represents the number of photons collected by the detector. In our experiments, we set
I0= 1× 106 as the normal dose, while I0= 1× 104 (1%of the normal dose) and I0= 0.5× 104 (0.5%of the
normal dose) as two low-dose conditions. For the proposed SDBDNet, we split the sinograms into two non-
overlapping, uniformly distributed groups based on the parity of the position of the detector cells within a range
of [1, 512], following the depiction infigure 2.

We reconstructed the normal-dose sinograms into images directly using theOS-SART algorithm andmade
them the reference images for evaluating the denoising performance of the proposed SDBDNet and other
comparisonmethods. To assess the quality of the output images, we chose the peak signal-to-noise ratio (PSNR)
(Hore andZiou 2010) and structural similarity indexmeasure (SSIM) (Hore andZiou 2010) as our evaluation

Figure 3.The flow chart ofDnCNNwithDropblock layers.

Figure 4.The flow chart of RED-CNN.
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metrics. For comparison, we computed the average PSNR and SSIMof all results on the test set for eachmethod.
As a benchmark, we also directly reconstructed low-dose images from the test set and calculated their scores.

In terms of the choice of comparisonmethods, we chose two traditional well-knowndenoisingmethods:
NLMfilter (Buades et al 2005) andBM3Dfilter (Dabov et al 2007). NLMandBM3D are two gold standards for
performance evaluation in image denoising, although the noise of LDCT images does not fully complywith their
Gaussian-noise assumption, their results still have reference values.Here we use their results as a benchmark and
reference. In learning-basedmethods, we chose two state-of-the-art (SOTA) self-supervised learning-based
denoisingmethods: Noise2Void (Krull et al 2019) (N2V) andNoise2Inverse (Hendriksen et al 2020), a recently
proposed dual-domain self-supervised denoisingmethod (Wagner et al 2023), referred as ETSRP (end-to-end
trainable and self-supervisedCT reconstruction pipeline, described by the original author), and awell-known
supervised LDCTdenoisingmethodRED-CNN (Chen et al 2017). For theNoise2Inversemethod, there is a
choice for the number of sub-sinograms.We tested two typical cases: N2Inverse-v2 andN2Inverse-v4,
respectively, for the sinogram to be split into 2 and 4 sub-sinograms.

Python codes for all the networks referred to above are publicly available. Also, theNLM filter and BM3D
filter were conducted by publicly available Python code in the SciPy library (https://scipy.org/) andBM3D
library (http://webpages.tuni.fi/foi/GCF-BM3D/), respectively. During network training, we utilized the
Mean Squared Error (MSE) loss function and the Adam (Kingma andBa 2014) algorithmwith an initial learning
rate of 0.0001 for optimization. Themini-batch size was set to 8, and the networkwas trained for 1000 epochs,
stopping when loss reduction was no longer significant for several epochs.All experiments were conducted on a
server runningUbuntu 18.04, with Python 3.9.0, PyTorch 1.2.0, and aNvidia RTX 2080TiGPU card. TheMSE
loss function andAdam algorithmwere provided by thePyTorch library, whereas theOS-SART algorithmwas
coded usingCUDAkernels wrapped by theCupy library (https://github.com/cupy/cupy).

4.1. Experiments on theAAPMdataset
TheAAPMdataset (McCollough 2016) is a clinical dataset containing 1308 thoracic volumes from1010
individuals, comprising 244 527 image slices with dimensions of 512× 512. From this dataset, we selected seven
patients’ 2209 slices as the training set, one patient’s 340 slices for validation, and another patient’s 344 slices for
testing.We performed experiments on this dataset with two low-dose conditions: I0= 1× 104(1%) and
I0= 0.5× 104(0.5%). After several trial and error tests, we set the parameters of the proposed SDBDNet as
follows: the scaling factor of theweighted averageβ= 0.5, the drop rate of theDropblock layers r= 0.3 and the
weighting hyper-parameter of the dual-domain lossλ= 0.5, for both the conditions.

To verify the denoising effect in the sinogramdomain, we directly output the results of SDBDNet in the
sinogramdomain (SD) and reconstructed them into images.We compared the results with that of theN2V
method acting directly on the sinogramdomain. Figure 5 presents the output sinograms and the reconstructed
images of the experiments with the low-dose condition of I0= 1× 104 and I0= 0.5× 104, respectively. As
shown infigures 5(c), (g), (k) and (o), N2V trends to over-denoise the sinogram and leads to loss of some lines in
the sinogram. The structures in the reconstructed images exhibit severe blurring and adhesion, especially in the
periphery. In contrast, the sinogram-domain network of SDBDNet, which uses theDropblock layers instead of
the traditional convolutional layers, canmake effective denoising to a certain extent while avoiding blurring
artifacts, as shown infigures 5(d), (h), (l) and (p). Please note that as a dual-domainmethod, SDBDNet pursues
moderate denoising rather than complete denoising in the sinogramdomain, such that structures are preserved
aswell as possible. Table 1 lists the quantitativemeasures, including average PSNR and SSIM, of eachmethod
with the low-dose conditions of I0= 1× 104 and I0= 0.5× 104, respectively. All average PSNR and SSIMvalues
were calculated using the corresponding normal-dose CT images. The quantitative results demonstrate that the
proposed SDBDNet offers clear advantages. In experiments with the low-dose condition of I0= 1× 104,
SDBDNet achieves an average PSNR advantage of 0.89 db and an average SSIM advantage of 0.010 compared to
other non-supervisedmethods. In experiments with the low-dose condition of I0= 0.5× 104, SDBDNet shows
an average PSNR advantage of 1.04 db and an SSIM advantage of 0.013 compared to other non-supervised
methods. Visual comparisons are presented infigures 6 and 7. Post-processing denoisingmethods that operate
solely in the image domain are prone to losing structure details or generating pseudo-structures due to the lack
of considering the sinogram. In contrast, as a dual-domain denoisingmethod, SDBDNet presents clearer and
more accurate image structure details. On the other hand, dual-domainmethodswith conventional CNN
denoiser on the sinogramdomainwould introduce blurring artifacts because of the noise characteristics, which
are not shown in the results of our SDBDNet due to our reasonable denoising control. In general, the image
results demonstrate that SDBDNet can achieve outstanding denoising effects. Specifically, infigure 6(i), the
elliptical structure pointed by the left arrow shows the shape closest to the reference, while othermethods show
excessive blur or deformation. Even the supervisedmethodRED-CNNcauses additional protrusion in the
upper left corner of this structure. The crescent shadow structure pointed by the right arrow also shows the best
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shape restorationwithout forming adhesionwith the cavity area below, while other comparisonmethods exhibit
deformation and confusion. Infigure 7(i), as shown in the zoomed-in area, SDBDNet restores the three elliptical
structures with high quality while keeping the dot structure pointed by the second arrow on the left from

Table 1. comparison (psnr(db)/ssim) of differentmethods on theAAPM
dataset with the low-dose condition of I0 = 1 × 104(1%) and
I0 = 0.5 × 104(0.5%).

I0 = 1 × 104 I0 = 0.5 × 104

Method PSNR SSIM PSNR SSIM

Low-dose 31.75 0.793 29.18 0.724

NLM (Traditional) 35.95 0.899 35.13 0.880

BM3D (Traditional) 36.45 0.909 35.76 0.898

Noise2Void (Self) 36.81 0.917 35.83 0.901

Noise2Inverse-v2 (Self) 34.41 0.897 33.85 0.880

Noise2Inverse-v4 (Self) 33.44 0.883 32.91 0.864

ETSRP (Self+Dual) 31.25 0.876 30.92 0.864

Proposed SDBDNet 37.70 0.927 36.87 0.914

RED-CNN (Supervised) 38.04 0.932 37.20 0.921

Figure 5.The sinogram and image results of the sinogram-domain denoising experiments with the low-dose condition of
I0 = 1 × 104 (infigures (a)–(h)) and I0 = 0.5 × 104 (infigures (i)–(p)). The displaywindows are set to [−820, 380]HU.
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disappearing. In contrast, unsupervised learningmethodsN2V, ETSRP and even the supervisedmethodRED-
CNN failed to protect the dot structure. The results of both versions ofN2Inverse exhibit high blurring.
AlthoughNLMshows higher sharpness at the dot structure, its effect on the three elliptical structures are bad.

4.2. Experiments on the LoDoPaBdataset
The LoDoPaB dataset (Leuschner et al 2021) is a simulated low-doseCTdataset that consists of over 40 000 out-
of-order normal-dose CT image slices with a size of 362× 362 pixels. In our experiments, we selected 2560 slices
from this dataset, of which 2048 slices for training, 256 slices for validation, and 256 slices for testing. To ensure
that thewhole imagewas in the imaging field, we padded the original images to 512× 512 pixels using zero-
padding around them.We performed experiments with two low-dose conditions I0= 1× 104(1%) and
I0= 0.5× 104(0.5%) on this dataset. For the parameters of the proposed SDBDNet, we setβ= 0.5, r= 0.2,
λ= 1.0 for experiments with the low-dose condition of I0= 1× 104 andβ= 0.5, r= 0.3,λ= 0.5 for thosewith
the low-dose condition of I0= 0.5× 104.

Table 2 presents the quantitative results (average PSNR and SSIM) of eachmethod. The proposed SDBDNet
demonstrates significant advantages in terms of thesemetrics. In experiments with the low-dose condition of
I0= 1× 104, SDBDNet achieved an advantage of 1.11 db in average PSNR and 0.017 in average SSIM compared

Figure 6.Visual comparison of differentmethods on theAAPMdataset with the low-dose condition of I0 = 1 × 104. The display
windows are set to [−420, 400]HU.

Figure 7.Visual comparison of differentmethods on theAAPMdataset with the low-dose condition of I0 = 0.5 × 104. The display
windows are set to [−740, 230]HU.
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to other non-supervisedmethods. In experiments with the low-dose condition of I0= 0.5× 104, SDBDNet
demonstrated an advantage of 1.40 db in average PSNR and 0.018 in average SSIM. The visual comparisons are
presented infigures 8 and 9. As shown in the left zoomed-in area offigure 8(i), SDBDNet successfully retains the
white dot structure pointed by the arrowwhile performing effective denoising, which has not been presented in
other learning-basedmethods. In the right zoomed-in area, SDBDNet performs a good restoration of the shape
and length of the curved shadow structure with low contrast in the image, showing the closest approximation to
the reference image. As a contrast, even the supervised learningmethodRED-CNN failed to restore these two
image details. Infigure 9, SDBDNet also shows effective restoration to image structures. As shown in the above
zoomed-in area offigure 9(i), while ensuring that the area pointed by the arrow is not excessively blurred,
SDBDNet does not recognize thewhite-dot noise in the lower right corner as a structure and incorrectly retains
it likeN2V andRED-CNN. In the lower zoomed-in area, SDBDNet clearly restores the bladed structure
indicated by the lower arrowwithout blurring the notch indicated by the upper arrow, outperforming all the
other non-supervised comparisonmethods. Table 3 presents the comparison of each learning-basedmethod in
terms of the parameter size, training time and inference time in the experiments on the LodoPaB dataset with the
low-dose condition of I0= 1× 104. As dual-domainmethods, our proposed SDBDNet and ETSRP require
more time for training and inference because of the dual-domain denoising and the embedded reconstructions.
Since SDBDNet contains two reconstructions and an averaging, its inference time ismore than double that of
ETSRP.However, it is still at a fast level andwill not show obvious disadvantages in applications. In terms of the
amount of network parameters, SDBDNet does not rely on a large number of parameters, even less than the
single-domainmethodNoise2Inverse.

Figure 8.Visual comparison of differentmethods on the LoDoPaB dataset with the low-dose condition of I0 = 1 × 104. The display
windows are set to [−420, 400]HU.

Table 2.Comparison (psnr(db)/ssim) of differentmethods on the
LodoPaB dataset with the low-dose condition of I0 = 1 × 104 (1%) and
I0 = 0.5 × 104 (0.5%).

I0 = 1 × 104 I0 = 0.5 × 104

Method PSNR SSIM PSNR SSIM

Low-dose 31.31 0.785 28.50 0.693

NLM (Traditional) 36.27 0.881 34.56 0.834

BM3D (Traditional) 37.47 0.914 35.92 0.880

Noise2Void (Self) 37.71 0.902 36.05 0.871

Noise2Inverse-v2 (Self) 36.69 0.891 34.60 0.801

Noise2Inverse-v4 (Self) 34.07 0.808 32.70 0.795

ETSRP (Self+Dual) 31.96 0.851 32.00 0.819

Proposed SDBDNet 38.82 0.931 37.45 0.898

RED-CNN (Supervised) 39.06 0.949 37.88 0.938
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4.3. Analysis of experimental results
Experiments on the two datasets demonstrate that the proposed SDBDNet outperforms popular denoising
methods including traditional non-learningmethods and self-supervised learning-basedmethods, in LDCT
denoising. The quantitative and visual results both confirm the effectiveness and improved performance of the
proposedmethod.

Based on both quantitative and visual results, it is evident that the performance ofNoise2Inverse andETSRP
is unsatisfactory in our experiments.We observed lower evaluation indices and poor image sharpness in these
methods. Furthermore, splitting the sinogram into four parts resulted inworse denoising performance than
splitting it into two parts forNoise2Inverse. This is because bothNoise2Inverse and ETSRPuse significantly less
sinogramdata to reconstruct images after splitting. In our experiments, the total number of imaging angles was
360, so that the sub-sinograms after the half split came from180 angles, while the sub-sinograms after the four-
part split came from90 angles. In this case, the reconstructed imageswould be severely noisy and blurred, which
negatively affected subsequent denoising results. These results validate the effectiveness of our interpolation and
correction scheme for constructing sub-sinograms. On the other hand, ETSRP applies a classical CNNdirectly
to denoise the sinogramwithout proper control, therebyworsening its performance due to the blurring from
inappropriate sinogramdenoising. This underscores the importance of our proposed SDBDNet’s sinogram-
domain denoising improvement.

Moreover, based on the visual results, dual-domain denoising is advantageous in restoring details compared
to pure image-domain denoising. As demonstrated infigures 7–9, the proposed SDBDNet outperformsN2V
and even the supervisedmethodRED-CNN in the processing of tiny structures in images. This highlights the
advantage of preserving details through dual-domain denoising.

Table 3.The parameter size, training time and inference time of different
learning-basedmethods in the experiments on the LodoPaB dataset with
the low-dose condition of I0 = 1 × 104 (1%).

Method Parameters Training Inference

Noise2Void (Self) 1.77 M 16 h 0.03 s

Noise2Inverse-v2 (Self) 2.58 M 13 h 0.02 s

Noise2Inverse-v4 (Self) 2.58 M 13 h 0.05 s

ETSRP (Self+Dual) 2.48 M 79 h 0.22 s

Proposed SDBDNet 2.48 M 56 h 0.51 s

RED-CNN (Supervised) 1.77 M 15 h 0.04 s

Figure 9.Visual comparison of differentmethods on the LoDoPaB dataset with the low-dose condition of I0 = 0.5 × 104. The display
windows are set to [−420, 600]HU.
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4.4. Ablation experiments
Weperformed ablation experiments on the LoDoPaB dataset, with the low-dose conditions of I0= 1× 104 (1%)
and I0= 0.5× 104 (0.5%), to verify the effectiveness of eachmodule in the proposed SDBDNet. The settings of
the ablation experiments are as follows:

• To assess the function of theDropBlockmodule, we performed experiments withoutDropBlock (i.e. r= 0)
while keeping other parameters unchanged (experiments on different values of r are presented in section 4.5 as
part of the parameters experiments).

• To validate the role of weighted average, we setα≡ 1 andα≡ 0, respectively, while keeping other parameters
unchanged. The former value corresponds to the conditionwhen the sinogrambefore reconstruction is
completely obtained by the sinogram-domain network and the latter corresponds to thosewithout denoising
(experiments on different values ofβ are presented in section 4.5 as part of the parameters experiments).

• To evaluate the effectiveness of joint training of the dual-domain networks, we turned off the back-
propagation of theOS-SART layer, kept other parameters unchanged, and performed experiments. In this
case, the training of the sinogram-domain network is not affected by the loss of the image domain but is
wholly determined by the loss of the sinogramdomain itself.

Table 4 presents the quantitative results of the ablation experiments with the low-dose conditions of
I0= 1× 104 and I0= 0.5× 104, respectively. The PSNR and SSIM results demonstrate that each designed
componentmakes a contribution to the denoising performance of the proposed SDBDNet. Specifically, the
dual-domain joint training strategy, theDropBlockmodule in the sinogramdomain, and theweighted average
of the sinogram all helped to improve the denoising performance.

4.5. Parameters experiments
The proposed SDBDNet has three essential parameters: the dropout ratio r of theDropBlock layers, the scaling
factorβ of theweighted average, and the coefficientλ that balances the dual-domain losses. Our experiments on
different datasets with different low-dose conditions show that the parameters for achieving good performance
varywithin a reasonable range. Specifically, in our experiments, we found that a dropout ratio of 0.2 or 0.3 for
theDropBlock network and a scaling factor between 0.5 and 0.75 for theweighted average performwell. In fact,
a too-large dropout ratio can undermine the denoising ability of the sinogram-domain network, while a too-
small valuemay not effectively suppress blurring artifacts.With regard to theweighted average, a near half-to-
half weight can better leverage the advantage of dual-domain denoising than a biased one.Moreover,
considering that theweights are further normalized based on themaximumvalue, a scaling factor slightly
greater than 0.5 is reasonable, which guides us in adjusting this parameter. Figure 10 shows the line charts of the
average PSNR and SSIM results of the experiments with differentβ and r.We compared the results of the
experiments on the LodoPaB dataset with the low-dose conditions of I0= 0.5× 104 (0.5%) and differentβ
whose values were taken every 0.125 from0 to 1. As shown in figure 10(a), asβ increases, the average PSNR and
SSIM show a trend offirst increasing and then decreasing, and reach the highest values atβ= 0.5 and 0.375
respectively. This reflects the impact of theweights on the final denoising performance and the importance of
balancing the dual-domain denoising. In the experiments on the LoDoPaB dataset with the low-dose conditions
of I0= 1× 104 (1%), we compared the average indicators of the results under different dropout ratios rwhose
valueswere taken every 0.1 from0 to 0.5. As shown infigure 10(b), the average PSNR and SSIM also present an
increasing and then decreasing trendwith the raising of r, and both reach theirmaximums at r= 0.2. The
comparison shows that the selection of the dropout ratios rhas a notable impact on the denoising performance
of SDBDNet. This is in linewith the principle of denoising with the dropblock layers. In fact, a too-small r cannot

Table 4. comparison (psnr(db)/ssim) of ablation experiments on the
LodoPaB dataset with the low-dose conditions of I0 = 1 × 104 (1%)
and I0 = 0.5 × 104 (0.5%).

I0 = 1 × 104 I0 = 0.5 × 104

Condition PSNR SSIM PSNR SSIM

Low-dose 31.31 0.785 28.50 0.693

r = 0 38.48 0.922 36.98 0.891

α ≡ 1 37.53 0.922 36.58 0.888

α ≡ 0 37.21 0.913 37.08 0.884

None BP 38.68 0.927 37.28 0.889

Proposed SDBDNet 38.82 0.931 37.45 0.898
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effectively suppress the blurring artifacts, while an over-large onewill lead to excessive discarding of
information, resulting in ineffective denoising.

We also performed experiments with differentλ values to verify their impact on the denoising performance
of SDBDNet on the LoDoPaB dataset with the low-dose conditions of I0= 1× 104 (1%) and I0= 0.5× 104

(0.5%). Table 5 presents the quantitative results.We found that, within a certain range, the difference ofλ has
little effect on the denoising results, but a too-large one could significantly reduce the denoising performance,
which confirms the importance ofmaintaining dual-domain balance during network training.

5. Conclusion

Wepresent SDBDNet, a self-supervised dual-domain deep learningmethod for LDCTdenoising. SDBDNet
conducts self-supervised denoising in both the sinogram and image domains and performs dual-domain joint
learning to improve denoising performance. To generate paired training data with uncorrelated noise,
SDBDNet splits sinograms into two parts and restores themwith interpolation and learning-based correction.
In addition, to achieve noise-adapted denoising and control the denoising strength in the sinogramdomain,
SDBDNet incorporates Dropblock layers and utilizes aweighted average of the treated andnoisy sinograms.
SDBDNet demonstrates high performance in LDCTdenoising and outperforms popular non-supervised
methods. In certain cases, it could even show advantages over supervised post-processingmethods.

As a self-supervisedmethod, SDBDNet offers greater application value than classical supervised approaches.
The effective processing in the dual domain enables it to handle the details and structure of CT images well. In
clinical work, its characteristic of not requiring paired or normal-dose datamakes itmore feasible. Physicians
need only perform low-dose scans of patients to obtain the data for network training and inference, rather than
potentially harmful normal-dose scans or repeated scans. For data belonging to different patients generated by
the samemachinewith the same imaging parameters, they can be considered to approximately follow the same
distribution and can be denoised using a trained or rapidly fine-tuned network. Although the training and
inference time required by our SDBDNet are relatively long compared to image-domainmethods, the fact that it
does not necessitate repeated and complete training, and its inference speed remains fast, ensures its practicality.

Figure 10.The line charts of indicators under differentβ and r. (a): the average PSNR and SSIM results of the experiments with
different weighting scaling factorsβ on the LodoPaB dataset with the low-dose conditions of I0 = 0.5 × 104. The indicators show a
trend offirst rising and then falling, and reach the highest values atβ = 0.5 and 0.375 respectively. (b): the average PSNR and SSIM
results of the experiments with different dropout ratios r on the LodoPaB dataset with the low-dose conditions of I0 = 1 × 104. The
indicators show a trend of rising then falling, and both reach theirmaximumswhen r = 0.2.

Table 5. comparison (psnr(db)/ssim) of differentλ
on the LodoPaB dataset with the low-dose conditions
of I0 = 1 × 104 (1%) and I0 = 0.5 × 104 (0.5%).

I0 = 1 × 104 I0 = 0.5 × 104

λ PSNR SSIM PSNR SSIM

0.25 38.77 0.932 37.33 0.898

0.50 38.68 0.930 37.45 0.898

0.75 38.69 0.928 37.31 0.897

1.00 38.82 0.933 37.28 0.890

2.00 37.97 0.932 36.87 0.887
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Although SDBDNet shows good performance in self-supervised LDCTdenoising, it still suffers from some
limitations. Due to the use of traditional denoising networks in the image domain, SDBDNet, like other image
domainmethods, does not completely avoid blurring of the reconstructed images, which is reflected in our
results. Second, embedding two reconstructions alsomakes SDBDNet require a lot of training and inference
time beyond the image-domainmethods. In addition, SDBDNet contains several non-learning
hyperparameters, the adjustment during trainingwill significantly increase theworkload. In terms of the
improvement for SDBDNet, one open challenge is how to generate paired datawith independent noise while
keeping the original noisy sinogram as complete as possible rather than splitting it in half. In addition, it is worth
studying to reduce the number of hyperparameters while ensuring the denoising performance.Moreover, using
fully-networked reconstruction to increase the efficiency of training and inference is also ameaningful research
topic.Wewill focus on these issues in future research.
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